• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Is “OI” The New AI? Biocomputers Could One Day Run On Human Brain Cells

February 28, 2023 by Deborah Bloomfield

Could computers of the future run on human brain cells? A team of researchers at Johns Hopkins University certainly think so. In a paper published in the journal Frontiers in Science, the team outline their plans for ‘organoid intelligence’, an emerging multidisciplinary field looking to develop biocomputers that operate with human brains cells. Such a development could not only massively expand the capabilities of modern computing but also open up new fields of study.

Organoids are tiny, self-organizing 3D tissues that are typically derived from stem cells, and mimic the main functional and architectural complexity of an organ. It is possible there could be as many types of organoids as there are tissues and organs in the body. To date, scientists have produced organoid cultures for intestines, liver, pancreas, kidneys, prostate, lung, optic cup, and the brain, and it seems more may be on the way. 

Advertisement

These tissues provide unique opportunities for scientists to study human diseases that do not rely on traditional methods associated with animal models. The reliance on animal models has historically led to a bottleneck in treatment discovery as there are biological processes that are specific to the human body and cannot be modeled on animals. The development of organoids promises to overcome these limitations. Yet the team at Johns Hopkins University are taking the research into organoids in a completely different direction. 

“Computing and artificial intelligence have been driving the technology revolution but they are reaching a ceiling,” explained Thomas Hartung, a professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, in a statement. “Biocomputing is an enormous effort of compacting computational power and increasing its efficiency to push past our current technological limits.”

Thomas Hartung with brain organoids in his lab at the Johns Hopkins Bloomberg School of Public Health

Thomas Hartung with brain organoids in his lab at the Johns Hopkins Bloomberg School of Public Health. Image credit: Will Kirk/Johns Hopkins University.

In 2012, Hartung and his colleagues started to grow and assemble brain organoids using human skin samples reprogramed into embryonic stem cells. Each organoid contains about 50,000 cells and are about the size of the dot on the letter “i”. The organoids also contain neurons and other features that appear to sustain basic functions such as learning and remembering. This presents great potential for building futuristic computers.   

A computer powered by this “biological hardware” could alleviate the energy consumption demands of supercomputers and make them far more sustainable. Human brains may be slower than computers at processing information, such as arithmetic, but they are far superior when it comes to logical decision making. Moreover, brains have an overall storage capacity estimated at 2,500 terabytes, with 86-100 billion neurons making connections.  

Advertisement

“The brain is still unmatched by modern computers,” Hartung said. “Frontier, the latest supercomputer in Kentucky, is a $600 million, 6,800-square-feet [632-square meter] installation. Only in June of last year, it exceeded for the first time the computational capacity of a single human brain – but using a million times more energy.”

Although it may be some time before organoid intelligence can compete with any type of computer, Hartung believes that biocomputers could be significantly faster, more efficient, and more powerful than their silicon-based counterparts, and they would require a fraction of the energy to operate. 

“It will take decades before we achieve the goal of something comparable to any type of computer,” Hartung said. “But if we don’t start creating funding programs for this, it will be much more difficult.”

The team also hope that their research will open up new opportunities for drug testing, especially for neurodevelopmental disorders and neurodegeneration. According to Lena Smirnova, Johns Hopkins assistant professor of environmental health and engineering, who co-leads the investigations, “We want to compare brain organoids from typically developed donors versus brain organoids from donors with autism”. 

Advertisement

“The tools we are developing towards biological computing are the same tools that will allow us to understand changes in neuronal networks specific for autism, without having to use animals or to access patients, so we can understand the underlying mechanisms of why patients have these cognition issues and impairments.”

The paper has been published in Frontiers in Science. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Mexican officials cut off new migrant caravan, breaking up main group
  2. United says about 90% of U.S. staff vaccinated ahead of company deadline
  3. Access to website dedicated to Tiananmen victims appears restricted in Hong Kong
  4. TWIS: The First Images Of The Sun’s Chromosphere, Stone Age Surgical Amputation, And Much More This Week

Source Link: Is "OI" The New AI? Biocomputers Could One Day Run On Human Brain Cells

Filed Under: News

Primary Sidebar

  • DNA From Greenland Sled Dogs – Maybe The World’s Oldest Breed – Reveals 1,000 Years Of Arctic History
  • Why Doesn’t Moonrise Shift By The Same Amount Each Night?
  • Moa De-Extinction, Fashionable Chimps, And Robot Surgery – No Human Required
  • “Human”: Powerful New Images Mark The Most Scientifically Accurate “Hyper-Real 3D Models Of Human Species Ever”
  • Did We Accidentally Leave Life On The Moon In 2019 – And Could We Revive It?
  • 1.8 Million Years Ago, Two Extinct Humans Had One Of The Gnarliest Deaths In History
  • “Powerful Image” Of One Of The World’s Rarest Tigers Exposes The Real Danger In Taman Negara
  • Evolution, Domestication, And A Lot Of Very Good Boys: How Wolves Became Dogs
  • Why Do Orcas Have White Spots Near Their Eyes?
  • Tomb Of First King Of Ancient Maya City Discovered In Belize
  • The Real Reason The Tip Of Your Tape Measure Wiggles Like That
  • The “Haunting” Last Message From NASA’s Opportunity Rover, Sent From Inside A Planet-Wide Storm
  • Adorable Video Proves Not All Gorillas Hate The Rain. It Might Even Win One A Mate
  • 5,000-Year-Old Rock Art May Show One Of Ancient Egypt’s First Rulers
  • Alzheimer’s-Linked Protein Levels “20 Times Higher” In Newborn Babies – What Does This Mean?
  • Americans Were Asked If They Thought Civil War Was Coming. The Results Were Unexpected
  • Voyager 1 & 2 Could Be Detected From Almost A Light-Year Away With Our Current Technology
  • Dams Have Nudged Earth’s Poles By Over 1 Meter In The Past 200 Years
  • This Sugar Could Be A Cure For Male Pattern Baldness – And It’s Been In Our Bodies All Along
  • “Cosmic Immigrants”: Daytime Star Seen In 1604 May Be An “Alien Type Ia Supernova”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version