• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Jump Into A Black Hole With NASA’s Incredible New Visualization

May 7, 2024 by Deborah Bloomfield

If you have ever dreamed of flying into a black hole, but the idea of your body getting spaghettified (yes, this is a real scientific term) into plasma is not appealing, NASA has a solution. Dive into an incredible new 360° visualization of what it would be like going around a black hole before plunging into the event horizon instead.

Advertisement

A black hole’s event horizon is the point of no return. Well, the surface of no return. The region separates the black hole from the rest of the universe. Once something crosses that threshold, nothing – not even light – can escape the gravitational pull of the black hole. Using a NASA supercomputer, it’s now possible to see what it would be like to fly around or even fall into a black hole.

Advertisement

“People often ask about this, and simulating these difficult-to-imagine processes helps me connect the mathematics of relativity to actual consequences in the real universe,” astrophysicist Jeremy Schnittman at NASA’s Goddard Space Flight Center, who created the visualizations, said in a statement.

“So I simulated two different scenarios, one where a camera — a stand-in for a daring astronaut — just misses the event horizon and slingshots back out, and one where it crosses the boundary, sealing its fate.”



The black hole in question is similar to Sagittarius A*, the supermassive black hole at the center of the Milky Way. It weighs 4.3 million times the mass of our Sun and has an event horizon of 25 million kilometers (16 million miles) across. In the visualization, you are moving faster than light, starting from 640 million kilometers (400 million miles) before approaching the black hole. And it’s a good thing this is a supermassive one.

Advertisement

“If you have the choice, you want to fall into a supermassive black hole,” Schnittman explained. “Stellar-mass black holes, which contain up to about 30 solar masses,  possess much smaller event horizons and stronger tidal forces, which can rip apart approaching objects before they get to the horizon.”

In this second simulation, the camera approaches and falls towards the supermassive black hole before managing to escape.



If you were to actually fly around the black hole, your experience of time would also change. Such an object would keep you younger as time would slow down due to your speed and its gravity. From a distant observer, you would never appear to cross the horizon, even though you did. If you were on the orbiting-only trip, you would come back younger. In this visualization, you would be 36 minutes younger than someone who stayed at your starting position.

Advertisement

“This situation can be even more extreme,” Schnittman noted. “If the black hole were rapidly rotating, like the one shown in the 2014 movie Interstellar, she would return many years younger than her shipmates.”

Black holes are fascinating and very complex objects, so visualizations such as these help bring some of their peculiarities to life.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. UK climate summit chief says had constructive discussions with China
  2. Bilt Rewards banks $60M growth on a $350M valuation to advance credit card benefits for renters
  3. How To Confirm If Alien Life Is Out There In The Universe
  4. How To Tell If An Egg Is Hard-Boiled Without Opening It

Source Link: Jump Into A Black Hole With NASA’s Incredible New Visualization

Filed Under: News

Primary Sidebar

  • We May Finally Have A Way To Tell Female Dinosaurs From Males, World’s Largest Spider Web Is Big Enough To Catch A Whale, And Much More This Week
  • This Month’s New Moon Will Be The Farthest From Earth For The Next 18 Years
  • Playing Music To Baby Mice Shapes Their Brain Development In A Sex-Specific Way
  • Ice XXI: Scientists Discover A New Form Of Ice Born At Room Temperature Under Intense Pressure
  • Citizen Scientists Are Helping With Rescue Efforts In Hurricane Melissa’s Aftermath – Here’s How You Can Too
  • What Is The Radio Blackout Scale And When Is It Needed?
  • “It’s Alive!”: The Real (And Horrifying) Science That Inspired Mary Shelley’s Frankenstein
  • First-Ever View Of The Sun’s Polar Magnetic Field Reveals Major Surprise
  • A Killer Whale Birth Has Been Captured On Camera In The Wild For The First Time
  • If You Shine A Light In Your Garden And See Lots Of Dots Reflected Back, We’ve Got Bad News
  • The “Sailor’s Eyeball” Blob Is One Of The Largest Single-Celled Organisms Ever Discovered
  • Icefish Live In Sub-Zero Antarctic Waters, So Why Don’t They Freeze?
  • We Finally Know What Happened To The Stone Of Destiny
  • Meet The Fishing Cat: The World’s Most Aquatic Feline Has Evolved To Master The Wetlands
  • Why Is There A Mysterious White Pyramid In Arizona?
  • Humpback Hitchhickers: Watch POV Footage Of Suckerfish Clinging To Whales As They Migrate Across Oceans
  • Oldowan Tools Saw Early Humans Through 300,000 Years Of Fire, Drought, And Shifting Climates, New Site Reveals
  • There Are Just Two Places In The World With No Speed Limits For Cars
  • Three Astronauts Are Stranded In Space Again, After Their Ride Home Was Struck By Space Junk
  • Snail Fossils Over 1 Million Years Old Show Prehistoric Snails Gave Birth to Live Young
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version