• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Lab-Grown 3D Embryo Models Make Their Own Blood In Regenerative Medicine Breakthrough

October 14, 2025 by Deborah Bloomfield

Human embryo models capable of synthesizing their own blood have been developed, in an advance that could lead to new treatments for blood disorders as well as the production of stem cells for transplants.

The 3D structures, named “hematoids”, are similar to embryos but differ in several important ways. They don’t have the capacity to continue to develop into a fetus – they lack essential tissues and would also require a yolk sac and placenta. However, what the study demonstrates is that they can effectively simulate processes that happen during the early stages of embryo growth.

The hematoids self-assemble from human pluripotent stem cells, which can be nudged down any development pathway to become any type of human tissue. On only the second day of development, the team observed that the hematoids had arranged themselves into the three layers that lay the foundation for the human body plan: the ectoderm, mesoderm, and endoderm.

On the eighth day, some of the hematoid cells were beating – the precursors to a heart.

And after around two weeks of development in the lab, the scientists observed the first tell-tale signs that they’d begun producing blood.

“It was an exciting moment when the blood red colour appeared in the dish – it was visible even to the naked eye,” said co-first author Dr Jitesh Neupane, of the University of Cambridge’s Gurdon Institute, in a statement.

The team observed the emergence of the three-dimensional embryo-like structures under a microscope in the lab. These started producing blood (seen here in red) after around two weeks of development - mimicking the development process in human embryos.

The embryo models on day 14, complete with blood.

Image credit: Jitesh Neupane, University of Cambridge

In normal embryogenesis, this stage corresponds to around four or five weeks of development. It’s not possible to observe this directly in a living human because the embryo would have implanted into the uterus wall by then, so these models are our only chance to study these processes in detail.

“Our new model mimics human foetal blood development in the lab. This sheds light on how blood cells naturally form during human embryogenesis, offering potential medical advances to screen drugs, study early blood and immune development, and model blood disorders like leukaemia,” said Neupane.

Co-first author Dr Geraldine Jowett added, “Hematoids capture the second wave of blood development that can give rise to specialised immune cells or adaptive lymphoid cells, like T cells, opening up exciting avenues for their use in modelling healthy and cancerous blood development.”



There are other ways of producing blood cells in a lab, but these typically need supplementing with a host of extra proteins to help them along the way. The hematoids don’t need this, and so more closely mimic the natural processes that happen when an embryo develops.

In the future, we could even see a scenario where a patient can donate their own pluripotent stem cells to be used to create hematoids that produce blood that is perfectly matched to their body, for truly personalized medicine.

“Although it is still in the early stages,” said senior author Professor Azim Surani, “the ability to produce human blood cells in the lab marks a significant step towards future regenerative therapies – which use a patient’s own cells to repair and regenerate damaged tissues.”

The study is published in the journal Cell Reports.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Remote learning is setting back millions of South Asian children – UNICEF
  2. FOMC teases start of taper “soon”
  3. Glorious Video Shows Whale Sharks Feeding On The Bottom Of The Ocean For First Time
  4. Octopus DNA Reveals Arctic Ice Sheet Could Collapse Sooner Than Expected

Source Link: Lab-Grown 3D Embryo Models Make Their Own Blood In Regenerative Medicine Breakthrough

Filed Under: News

Primary Sidebar

  • World’s Oldest Poison Arrows Were Used By Hunters 60,000 Years Ago
  • The Real Reason You Shouldn’t Eat (Most) Raw Cookie Dough
  • Antarctic Scientists Have Just Moved The South Pole – Literally
  • “What We Have Is A Very Good Candidate”: Has The Ancestor Of Homo Sapiens Finally Been Found In Africa?
  • Europe’s Missing Ceratopsian Dinosaurs Have Been Found And They’re Quite Diverse
  • Why Don’t Snorers Wake Themselves Up?
  • Endangered “Northern Native Cat” Captured On Camera For The First Time In 80 Years At Australian Sanctuary
  • Watch 25 Years Of A Supernova Expanding Into Space Squeezed Into This 40-Second NASA Video
  • “Diet Stacking” Trend Could Be Seriously Bad For Your Health
  • Meet The Psychedelic Earth Tiger, A Funky Addition To “10 Species To Watch” In 2026
  • The Weird Mystery Of The “Einstein Desert” In The Hunt For Rogue Planets
  • NASA Astronaut Charles Duke Left A Touching Photograph And Message On The Moon In 1972
  • How Multilingual Are You? This New Language Calculator Lets You Find Out In A Minute
  • Europa’s Seabed Might Be Too Quiet For Life: “The Energy Just Doesn’t Seem To Be There”
  • Amoebae: The Microscopic Health Threat Lurking In Our Water Supplies. Are We Taking Them Seriously?
  • The Last Dogs In Antarctica Were Kicked Out In April 1994 By An International Treaty
  • Interstellar Comet 3I/ATLAS Snapped By NASA’s Europa Mission: “We’re Still Scratching Our Heads About Some Of The Things We’re Seeing”
  • New Record For Longest-Ever Observation Of One Of The Most Active Solar Regions In 20 Years
  • Large Igneous Provinces: The Volcanic Eruptions That Make Yellowstone Look Like A Hiccup
  • Why Tokyo Is No Longer The World’s Most Populous City, According To The UN
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version