• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Laser-Engorged Atoms Become A Quantum Watch In New Time Measurement Method

November 7, 2022 by Deborah Bloomfield

Researchers have developed a quantum watch: a quantum system that has a unique way to measure time. It doesn’t need a reference time or a repeating pattern to provide a measurement of the elapsed time – and they weren’t even looking to demonstrate such a timepiece.

The easiest analogy to understand how it works would be to consider it similar to a ruler or a tape measure. In a regular watch, the time markers are down to a beat, whether mechanical or electronic, which corresponds to the smallest unit of time that the device can measure. The accumulation of its repetition gives you timing. On a ruler, every distance is written out. Your ruler is not counting how many millimeters have ever been between this point and that point. You don’t have to go and look where it started.

Advertisement

The quantum watch is like that. The time of an event doesn’t depend on a specific beat but on the evolution of a quantum system made of Rydberg atoms. This is measured by laser pulses. These atoms are a special type of excited state where electrons occupy orbitals that are much further away from the nucleus than usual. They can be used to create molecular bonds that are longer than some bacteria, and they have numerous technical applications.

The quantum watch works because it can tell how long this Rydberg state in helium atoms has lived. The state is brief for human timings – but compared to the very short intervals of time in which quantum mechanical processes happen, it would be like comparing one second to tens of millions of years.

“This is just a new way of observing time. It’s not going to beat optical atomic clocks, it is just a new way of detecting time,” co-author Johan Söderström, from Uppsala University, told IFLScience.

Advertisement

Lead author Marta Berholts, from Tartu University, conducted a lot of the data collection during the pandemic lockdowns. Having just moved to Uppsala University, and not knowing people in the country, she had lots of time to work on the experiment. The experiment itself was not about finding a quantum watch, and the team has more results to publish about the work.

“We didn’t think of the possibility that we would use it as a watch,” Söderström told IFLScience. “That is something that came out after we looked at the data with some fairly simple theoretical modeling. [The quantum watch] turned out to be surprisingly exact.”

The team has not considered if there are realistic applications for the quantum watch. Rydberg states are useful in quantum computers so there might be intriguing applications there for somebody to find.

Advertisement

The work is published in Physical Review Research. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Exclusive-China’s Miniso to double U.S. stores, add NY ‘flagship’ as pandemic slashes mall rents
  2. European shares turn positive as easing U.S. inflation data offsets luxury drag
  3. Japan’s Aso urges joint monetary, fiscal policies to spur inflation
  4. Soccer-Rashford receives honorary doctorate from University of Manchester

Source Link: Laser-Engorged Atoms Become A Quantum Watch In New Time Measurement Method

Filed Under: News

Primary Sidebar

  • Who Was Buried At Cave Of Salome: A Female Disciple, Jesus’ Midwife, Or A Princess?
  • “Hidden” Changes To US Health Data Swapping “Gender” For “Sex” Spark Fears For Public Trust
  • Easter Island Was Never As Isolated As We Thought – Study Puts That “Strange Argument” To Bed
  • If Birds Are Dinosaurs, Why Are None As Big As T. Rexes?
  • Psychologists Demonstrate Illusion That Could Be Screwing Up Our Perception Of Time
  • Why Are So Many Enormous Roman Shoes Being Discovered At Hadrian’s Wall?
  • Scientists Think They’ve Pinpointed Structural Differences In Psychopaths’ Brains
  • We’ve Found Our Third-Ever Interstellar Visitor, Orcas Filmed Kissing (With Tongues) In The Wild, And Much More This Week
  • The “Eyes Of Clavius” Will Be Visible On The Moon Today, Thanks To Clair-Obscur Effect
  • Shockingly High Microplastic Levels Found On Remote Mediterranean Coral Reef Island
  • Interstellar Object, Cheesy Nightmares, And Smooching Orcas
  • World’s Largest Martian Meteorite Up For Auction Could Reach Whopping $2-4 Million
  • Kimalu The Beluga Whale Undergoes Pioneering Surgery And Becomes First Beluga To Survive General Aesthetic
  • The 1986 Soviet Space Mission That’s Never Been Repeated: Mir To Salyut And Back Again
  • Grisly Incident In Yellowstone National Park Shows Just How Dangerous This Vibrant Wilderness Can Be
  • Out Of All Greenhouse Gas Emitters On Earth, One US Organization Takes The Biscuit
  • Overly Ambitious Adder Attempts To Eat Hare 10 Times Its Mass In Gnarly Video
  • How Fast Does A Spacecraft Need To Go To Escape The Solar System?
  • President Trump’s Cuts To USAID Could Result In A “Staggering” 14 Million Avoidable Deaths By 2030
  • Dzo: Hybrids Beasts That Are Perfectly Crafted For Life On Earth’s Highest Mountains
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version