• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Laser Experiment Breaks Record While Crossing University Hallway

January 21, 2023 by Deborah Bloomfield

Efficient cable communication uses fiber optic cables to transmit data. Light sent through them has a maximum theoretical transmission efficiency of about 92 percent. There are drawbacks to these fibers, but sending laser signals through the air cannot compete with that. However, over the last decade, researchers have started working on ways to do the same across the air – and they just broke a record for distance.

A team at the University of Maryland, where this approach was demonstrated in 2014, was able to transmit a laser for 45 meters (148 feet) and get a good transmission efficiency. To do that, they had to turn the air into a fiber optic, something they call an air waveguide. Without it, a laser (or any light beam) would expand as it travels, so over a certain distance you wouldn’t be able to get a signal anymore.

Advertisement

To carve this waveguide, they used a different high-energy laser to shoot ultra-short pulses. These create plasma along a filament in the air. This hot state of matter heats up the air, leaving behind a path of low-density air in its wake – but that’s not the path followed by the waveguide. The team needs a high-density core surrounded by low-density air. These filaments were created in a ring, with the laser transmission going through the middle.

The team wanted to test how long they could make one of these waveguides. And so they were allowed to test this approach across a long hallway in the university.   

“There were major challenges: the huge scale-up to 50 meters forced us to reconsider the fundamental physics of air waveguide generation, plus wanting to send a high-power laser down a 50-meter-long public hallway naturally triggers major safety issues,” Professor Howard Milchberg said in a statement. “Fortunately, we got excellent cooperation from both the physics and from the Maryland environmental safety office.”

Distributions of the laser light collected after the hallway journey without a waveguide (left) and with a waveguide (right).

On the left the laser received at the end of the halwlay without a waveguide. On the right, the same laser with a waveguide. Image Credit: Intense Laser-Matter Interactions Lab, UMD

The air waveguide allowed for 20 percent of the signal to be transmitted. The laser reaching 45 meters (147.6 feet) is 60 times longer than what had been achieved in the past. Afterward, in a lab setup, 8-meter (26-foot) long waveguides were able to transmit 60 percent of the signal. Data collected suggest that they are nowhere near the theoretical limit for this approach and that higher guiding efficiencies can be achieved in the future.

“If we had a longer hallway, our results show that we could have adjusted the laser for a longer waveguide,” says Andrew Tartaro, a UMD physics graduate student who worked on the project and is an author on the paper. “But we got our guide right for the hallway we have.”

The waveguide lasts for about one-hundredth of a second, a small time interval but enough for a laser to cover thousands of kilometers in that time. The team is not expecting to extend the waveguide that far, but they think they can go significantly further than the length of the hallway.

Advertisement

“Reaching the 50-meter scale for air waveguides literally blazes the path for even longer waveguides and many applications,” Milchberg says. “Based on new lasers we are soon to get, we have the recipe to extend our guides to one kilometer and beyond.”

The paper accepted for publication in the journal Physical Review X.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cuba publishes draft family code that opens door to gay marriage
  2. Microsoft CEO says failed TikTok deal ‘strangest thing I’ve worked on’
  3. Trump’s DC hotel lost millions despite foreign payments -U.S. House panel
  4. Medieval Necklace Found At “Internationally Important Burial” Site Of Female Church Leader

Source Link: Laser Experiment Breaks Record While Crossing University Hallway

Filed Under: News

Primary Sidebar

  • DNA From Greenland Sled Dogs – Maybe The World’s Oldest Breed – Reveals 1,000 Years Of Arctic History
  • Why Doesn’t Moonrise Shift By The Same Amount Each Night?
  • Moa De-Extinction, Fashionable Chimps, And Robot Surgery – No Human Required
  • “Human”: Powerful New Images Mark The Most Scientifically Accurate “Hyper-Real 3D Models Of Human Species Ever”
  • Did We Accidentally Leave Life On The Moon In 2019 – And Could We Revive It?
  • 1.8 Million Years Ago, Two Extinct Humans Had One Of The Gnarliest Deaths In History
  • “Powerful Image” Of One Of The World’s Rarest Tigers Exposes The Real Danger In Taman Negara
  • Evolution, Domestication, And A Lot Of Very Good Boys: How Wolves Became Dogs
  • Why Do Orcas Have White Spots Near Their Eyes?
  • Tomb Of First King Of Ancient Maya City Discovered In Belize
  • The Real Reason The Tip Of Your Tape Measure Wiggles Like That
  • The “Haunting” Last Message From NASA’s Opportunity Rover, Sent From Inside A Planet-Wide Storm
  • Adorable Video Proves Not All Gorillas Hate The Rain. It Might Even Win One A Mate
  • 5,000-Year-Old Rock Art May Show One Of Ancient Egypt’s First Rulers
  • Alzheimer’s-Linked Protein Levels “20 Times Higher” In Newborn Babies – What Does This Mean?
  • Americans Were Asked If They Thought Civil War Was Coming. The Results Were Unexpected
  • Voyager 1 & 2 Could Be Detected From Almost A Light-Year Away With Our Current Technology
  • Dams Have Nudged Earth’s Poles By Over 1 Meter In The Past 200 Years
  • This Sugar Could Be A Cure For Male Pattern Baldness – And It’s Been In Our Bodies All Along
  • “Cosmic Immigrants”: Daytime Star Seen In 1604 May Be An “Alien Type Ia Supernova”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version