• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Laser Experiment Breaks Record While Crossing University Hallway

January 21, 2023 by Deborah Bloomfield

Efficient cable communication uses fiber optic cables to transmit data. Light sent through them has a maximum theoretical transmission efficiency of about 92 percent. There are drawbacks to these fibers, but sending laser signals through the air cannot compete with that. However, over the last decade, researchers have started working on ways to do the same across the air – and they just broke a record for distance.

A team at the University of Maryland, where this approach was demonstrated in 2014, was able to transmit a laser for 45 meters (148 feet) and get a good transmission efficiency. To do that, they had to turn the air into a fiber optic, something they call an air waveguide. Without it, a laser (or any light beam) would expand as it travels, so over a certain distance you wouldn’t be able to get a signal anymore.

Advertisement

To carve this waveguide, they used a different high-energy laser to shoot ultra-short pulses. These create plasma along a filament in the air. This hot state of matter heats up the air, leaving behind a path of low-density air in its wake – but that’s not the path followed by the waveguide. The team needs a high-density core surrounded by low-density air. These filaments were created in a ring, with the laser transmission going through the middle.

The team wanted to test how long they could make one of these waveguides. And so they were allowed to test this approach across a long hallway in the university.   

“There were major challenges: the huge scale-up to 50 meters forced us to reconsider the fundamental physics of air waveguide generation, plus wanting to send a high-power laser down a 50-meter-long public hallway naturally triggers major safety issues,” Professor Howard Milchberg said in a statement. “Fortunately, we got excellent cooperation from both the physics and from the Maryland environmental safety office.”

Distributions of the laser light collected after the hallway journey without a waveguide (left) and with a waveguide (right).

On the left the laser received at the end of the halwlay without a waveguide. On the right, the same laser with a waveguide. Image Credit: Intense Laser-Matter Interactions Lab, UMD

The air waveguide allowed for 20 percent of the signal to be transmitted. The laser reaching 45 meters (147.6 feet) is 60 times longer than what had been achieved in the past. Afterward, in a lab setup, 8-meter (26-foot) long waveguides were able to transmit 60 percent of the signal. Data collected suggest that they are nowhere near the theoretical limit for this approach and that higher guiding efficiencies can be achieved in the future.

“If we had a longer hallway, our results show that we could have adjusted the laser for a longer waveguide,” says Andrew Tartaro, a UMD physics graduate student who worked on the project and is an author on the paper. “But we got our guide right for the hallway we have.”

The waveguide lasts for about one-hundredth of a second, a small time interval but enough for a laser to cover thousands of kilometers in that time. The team is not expecting to extend the waveguide that far, but they think they can go significantly further than the length of the hallway.

Advertisement

“Reaching the 50-meter scale for air waveguides literally blazes the path for even longer waveguides and many applications,” Milchberg says. “Based on new lasers we are soon to get, we have the recipe to extend our guides to one kilometer and beyond.”

The paper accepted for publication in the journal Physical Review X.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cuba publishes draft family code that opens door to gay marriage
  2. Microsoft CEO says failed TikTok deal ‘strangest thing I’ve worked on’
  3. Trump’s DC hotel lost millions despite foreign payments -U.S. House panel
  4. Medieval Necklace Found At “Internationally Important Burial” Site Of Female Church Leader

Source Link: Laser Experiment Breaks Record While Crossing University Hallway

Filed Under: News

Primary Sidebar

  • The 2021 “Heat Dome” Killed Her Mother. Now, She’s Suing The Oil Companies Responsible
  • Two Of The Most Destructive Termites Got It On, Sparking Hybrid Threat In Florida
  • The Mad Gasser of Mattoon: A Story Of Anxiety And Hysteria In America’s Heartland
  • Tourists Swimming With Orcas In Mexico As Tour Guides Exploit Legal Loopholes
  • Hells Canyon, The Deepest River Gorge In The US, Was Created Incredibly Recently
  • It’s The Perfect Time Of Year To See Noctilucent Clouds In The Twilight Skies
  • Hawaiian Volcanoes Have Erupted With Gold That Came From Earth’s Core
  • Why Do Some Australian Beaches Have Vinegar Stations?
  • 2-Year-Old Who “Loves A Challenge” Becomes Youngest Ever Member Of Mensa
  • How Bioacoustics Could Decode Howls And Give Us “A Peek Into The Language Of Wolves”
  • Ancient Inca Used A Mysterious String “Writing” System – And We’re Starting To Understand What It Said
  • In 2015, Over 200,000 Saiga Mysteriously Died In An Unprecedented Event: What Happened?
  • Vegans And Vegetarians Aren’t Who You Thought
  • How Does Tickling Work? We’ve Been Trying To Find Out For 2,000 Years
  • Watch Hawai’i’s Volcano Kilauea Shoot Lava 300 Meters Into The Sky
  • Scientists Propose Deliberately Infecting Another World With Life To See What Happens
  • Does The Human Brain Have A Finite Memory Capacity?
  • Record-Breaking Data Transmission Could Transmit Everything On Netflix In Less Than A Second
  • Some Spiders Are More Venomous Than Others – And We Now Know Why
  • Asia’s Other “Great Wall”: Very Unexpected Finds Unearthed At Mongolia’s Medieval Wall System
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version