• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Lasers Power A Particle Accelerator That (Almost) Fits On A Coin

October 26, 2023 by Deborah Bloomfield

Medieval philosophers debated how many angels could dance on the head of a pin; modern scientists are getting close to sticking a particle accelerator on one instead.

Particle physicists have announced the demonstration of a nano-accelerator that uses lasers to push electrons to high speeds. Naturally tiny machines like this are not going to replace vast machines the size of cities any time soon, but they should address questions that don’t require pushing matter to such extremes, and could make medical treatments far more targeted.

Advertisement

Along with the giant particle accelerators such as at CERN, a variety of smaller ones exist down to those that can sit on a (large) benchtop and move charged particles to more modest speeds. They need to be this big because they use radio frequency waves, whose wavelengths are too far apart for anything shorter, to do the accelerating. In an age of miniaturization, physicists have dreamed of going smaller still by using optical light as the force to save money and energy. The gains in energy achieved on microscopic devices were too small to be useful, however.

Now, teams at Freidrich-Alexander-Universität (FAU) and Stanford each claim to have provided useful amounts of energy using particle accelerators barely large enough to see. To do it, they had to combine recent advances with a once-popular idea that has more recently been neglected.

Nanophotonic accelerators, also known as dielectric laser accelerators, are less than half a millimeter (0.02 inches) long and push electrons down a 225 nanometer (0.000009 inch) wide channel. Very short bursts of laser pulses accelerate the particles. Unlike metallic surfaces, which cannot cope with wavelengths shorter than the radio spectrum, dielectric materials can operate with optical light.

“The dream application would be to place a particle accelerator on an endoscope in order to be able to administer radiotherapy directly at the affected area within the body,” said Dr Tomáš Chlouba of FAU in a statement. Chlouba and co-authors acknowledge they are not there yet, but claim to have made major progress. “For the first time, we really can speak about a particle accelerator on a chip,” said Dr Roy Shiloh.

Advertisement

If you only want to accelerate a single charged particle at a time it can be relatively easy, but that is seldom a useful thing to do. Particle accelerators, small and large, face the challenge of keeping particles of the same charge direction together while their mutual repulsion makes them spread out. 

The team addressed this problem using alternating phase focusing (APF), an approach physicists had toyed with when building the first accelerators. Physical laws dictate that it is impossible to focus charged particles in all three directions at once. APF gets around this by using lasers to focus a group of electrons in one dimension while allowing them to defocus in another, before reversing the dimensions. The net effect is to focus in both directions and can be repeated until the particles are tightly bunched.

Two years ago, the FAU team showed that by passing electrons between a series of pillars, electrons can be repeatedly focused or defocused in successive cells on an almost unimaginably short timescale. “By way of comparison,” Dr Johannes Illmer said at the time, “the large Hadron collider at CERN uses 23 of these cells in a 2,450 metre [8,040 foot] long curve. Our nanostructure uses five similar-acting cells in just 80 micrometres.”

A larger test version of the equipment for alternating phase focusing

A larger test version of the equipment for alternating phase focusing.

Image Credit: Maximilian Schlosser

Now, the FAU team have built a fully functional particle accelerator on a chip using this technique, adding 12 kiloelectron volts, a 43 percent increase in energy for the electrons involved. The next goal is to increase this energy gain to the point where it can be used in medicine, such as for irradiating tumors, which will require a 100-fold increase in energy. “We will have to expand the structures or place several channels next to each other,” Chlouba said. 

Advertisement

The FAU team’s work is published in Nature. The Stanford team’s work is still under peer review, but a preprint is available at arXiv.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It
  4. Where Inside Us Do We Feel Love?

Source Link: Lasers Power A Particle Accelerator That (Almost) Fits On A Coin

Filed Under: News

Primary Sidebar

  • World’s Largest Ephemeral Lake Set To Turn Iconic Peachy Pink After Extreme Flooding
  • Stunning New JWST Observations Give Further Evidence That Dark Matter Is A Real Substance
  • How Big Is This Spider? Study Explains Why You Might Overestimate Their Size
  • Orcas Sometimes Give Humans Presents Of Food And We Don’t Know Why
  • New Approach For Interstellar Navigation Was Tested On A Spacecraft 9 Billion Kilometers Away
  • For Only The Second Recorded Time, Two Novae Are Visible With The Naked Eye At Once
  • Long-Lost Ancient Egyptian City Ruled By Cobra Goddess Discovered In Nile Delta
  • Much Maligned Norwegian Lemming Is One Of The Newest Mammal Species On Earth
  • Where Are The Real Geographical Centers Of All The Continents?
  • New Species Of South African Rain Frog Discovered, And It’s Absolutely Fuming About It
  • Love Cheese But Hate Nightmares? Bad News, It Looks Like The Two Really Are Related
  • Project Hail Mary Trailer First Look: What Would Happen If The Sun Got Darker?
  • Newly Discovered Cell Structure Might Hold Key To Understanding Devastating Genetic Disorders
  • What Is Kakeya’s Needle Problem, And Why Do We Want To Solve It?
  • “I Wasn’t Prepared For The Sheer Number Of Them”: Cave Of Mummified Never-Before-Seen Eyeless Invertebrates Amazes Scientists
  • Asteroid Day At 10: How The World Is More Prepared Than Ever To Face Celestial Threats
  • What Happened When A New Zealand Man Fell Butt-First Onto A Powerful Air Hose
  • Ancient DNA Confirms Women’s Unexpected Status In One Of The Oldest Known Neolithic Settlements
  • Earth’s Weather Satellites Catch Cloud Changes… On Venus
  • Scientists Find Common Factors In People Who Have “Out-Of-Body” Experiences
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version