• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Light Trapped Inside A Metamaterial Makes It 10 Times More Magnetic

August 17, 2023 by Deborah Bloomfield

The vast majority of modern technology is about controlling electromagnetic phenomena. You are controlling electricity or charged particles, you are controlling magnets, or you are controlling light. Researchers have now shown a way to combine magnets and light, by trapping light inside a peculiar magnetic material.

The object is a layered magnetic semiconductor made of chromium, sulfur, and bromine. It is classed as a magnetic van der Waals material, a new type of two-dimensional metamaterial first reported in 2017. Metamaterials have properties that are not found in naturally occurring materials and hold potential for exciting applications.

Advertisement

What intrigued the researchers about this material is the ability to create an exciton, a quasiparticle that forms between an electron and an electron hole – the vacancy electrons leave in superconductors. These excitons behave like a particle moving about in the material and interacting with other particles as well as light.

The excitons can actually have strong interactions with light, and it is this property that the scientists focused on. When light is shone at the material, it interacts with the excitons in such a way that it becomes trapped, without any other external interactions. And by trapping the light, it becomes 10 times more magnetic.

“Since the light bounces back and forth inside the magnet, interactions are genuinely enhanced,” lead author Dr Florian Dirnberger, from City College of New York, said in a statement. “To give an example, when we apply an external magnetic field the near-infrared reflection of light is altered so much, the material basically changes its color. That’s a pretty strong magneto-optic response.”

Technology mixing light and magnetism is not common. Most approaches use a mix of electric and magnetic approaches or optical-electric. This material shows that light and magnets can go together as long as you have a special material that can respond in the right way.

Advertisement

“Ordinarily, light does not respond so strongly to magnetism,” said senior author and group leader Vinod M Menon. “This is why technological applications based on magneto-optic effects often require the implementation of sensitive optical detection schemes.”

“Technological applications of magnetic materials today are mostly related to magneto-electric phenomena. Given such strong interactions between magnetism and light, we can now hope to one day create magnetic lasers and may reconsider old concepts of optically controlled magnetic memory,” co-author Jiamin Quan added.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Israeli minister says Iran giving militias drone training near Isfahan
  2. French watchdog chief calls for ban on ‘payment for order flow’ in EU stock market
  3. What Would Happen To Humanity If All Microbes Suddenly Disappeared?
  4. IFLScience The Big Questions: How Is Climate Change Affecting Polar Bear Populations?

Source Link: Light Trapped Inside A Metamaterial Makes It 10 Times More Magnetic

Filed Under: News

Primary Sidebar

  • A New Way Of Looking At Einstein’s Equations Could Reveal What Happened Before The Big Bang
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations, NASA Reveals Comet 3I/ATLAS Images From 8 Missions, And Much More This Week
  • The Latest Internet Debate: Is It More Efficient To Walk Around On Massive Stilts?
  • The Trump Administration Wants To Change The Endangered Species Act – Here’s What To Know
  • That Iconic Lion Roar? Turns Out, They Have A Whole Other One That We Never Knew About
  • What Are Gravity Assists And Why Do Spacecraft Use Them So Much?
  • In 2026, Unique Mission Will Try To Save A NASA Telescope Set To Uncontrollably Crash To Earth
  • Blue Origin Just Revealed Its Latest New Glenn Rocket And It’s As Tall As SpaceX’s Starship
  • What Exactly Is The “Man In The Moon”?
  • 45,000 Years Ago, These Neanderthals Cannibalized Women And Children From A Rival Group
  • “Parasocial” Announced As Word Of The Year 2025 – Does It Describe You? And Is It Even Healthy?
  • Why Do Crocodiles Not Eat Capybaras?
  • Not An Artist Impression – JWST’s Latest Image Both Wows And Solves Mystery Of Aging Star System
  • “We Were Genuinely Astonished”: Moss Spores Survive 9 Months In Space Before Successfully Reproducing Back On Earth
  • The US’s Surprisingly Recent Plan To Nuke The Moon In Search Of “Negative Mass”
  • 14,400-Year-Old Paw Prints Are World’s Oldest Evidence Of Humans Living Alongside Domesticated Dogs
  • The Tribe That Has Lived Deep Within The Grand Canyon For Over 1,000 Years
  • Finger Monkeys: The Smallest Monkeys In The World Are Tiny, Chatty, And Adorable
  • Atmospheric River Brings North America’s Driest Place 25 Percent Of Its Yearly Rainfall In A Single Day
  • These Extinct Ice Age Giant Ground Sloths Were Fans Of “Cannonball Fruit”, Something We Still Eat Today
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version