• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Light Trapped Inside A Metamaterial Makes It 10 Times More Magnetic

August 17, 2023 by Deborah Bloomfield

The vast majority of modern technology is about controlling electromagnetic phenomena. You are controlling electricity or charged particles, you are controlling magnets, or you are controlling light. Researchers have now shown a way to combine magnets and light, by trapping light inside a peculiar magnetic material.

The object is a layered magnetic semiconductor made of chromium, sulfur, and bromine. It is classed as a magnetic van der Waals material, a new type of two-dimensional metamaterial first reported in 2017. Metamaterials have properties that are not found in naturally occurring materials and hold potential for exciting applications.

Advertisement

What intrigued the researchers about this material is the ability to create an exciton, a quasiparticle that forms between an electron and an electron hole – the vacancy electrons leave in superconductors. These excitons behave like a particle moving about in the material and interacting with other particles as well as light.

The excitons can actually have strong interactions with light, and it is this property that the scientists focused on. When light is shone at the material, it interacts with the excitons in such a way that it becomes trapped, without any other external interactions. And by trapping the light, it becomes 10 times more magnetic.

“Since the light bounces back and forth inside the magnet, interactions are genuinely enhanced,” lead author Dr Florian Dirnberger, from City College of New York, said in a statement. “To give an example, when we apply an external magnetic field the near-infrared reflection of light is altered so much, the material basically changes its color. That’s a pretty strong magneto-optic response.”

Technology mixing light and magnetism is not common. Most approaches use a mix of electric and magnetic approaches or optical-electric. This material shows that light and magnets can go together as long as you have a special material that can respond in the right way.

Advertisement

“Ordinarily, light does not respond so strongly to magnetism,” said senior author and group leader Vinod M Menon. “This is why technological applications based on magneto-optic effects often require the implementation of sensitive optical detection schemes.”

“Technological applications of magnetic materials today are mostly related to magneto-electric phenomena. Given such strong interactions between magnetism and light, we can now hope to one day create magnetic lasers and may reconsider old concepts of optically controlled magnetic memory,” co-author Jiamin Quan added.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Israeli minister says Iran giving militias drone training near Isfahan
  2. French watchdog chief calls for ban on ‘payment for order flow’ in EU stock market
  3. What Would Happen To Humanity If All Microbes Suddenly Disappeared?
  4. IFLScience The Big Questions: How Is Climate Change Affecting Polar Bear Populations?

Source Link: Light Trapped Inside A Metamaterial Makes It 10 Times More Magnetic

Filed Under: News

Primary Sidebar

  • Don’t Pour Oil Down The Drain, There’s A Very Clever Way To Get Rid Of It
  • People Around The World Are Drinking Less Alcohol
  • Is It Better To Have One Long Walk Or Many Short Ones?
  • Where Is The World’s Largest Christmas Tree?
  • In A Monumental Scientific Effort, The Human Genome Has Been Mapped Across Time And Space In Four Dimensions
  • Can This Electronic Nose “Smell” Indoor Mould?
  • Why Does The Earth’s Closest Approach To The Sun Take Place During Winter?
  • 2025 Was The Year Humanity Got Closer Than Ever To Finding Alien Life
  • Kilauea Has Officially Been Erupting For A Year – You Can Watch Its Latest Spectacular Lava Fountains Live
  • Meet The Ladybird Spider, A “Red-Colored Oddball” With Features Never Seen Before
  • Breakthrough Listen Searched Interstellar Object 3I/ATLAS For Technosignatures During Its Closest Approach To Earth
  • “Miracle” Rhinoceros Calf’s Chonky Weight Gain Offers Hope For Species
  • Would You Swap Your Festive Feast For Something Plant-Based Or Lab-Grown?
  • Rodents In The US Are Rapidly Evolving Right “Under Your Nose”
  • 39-Year-Old Discovers Raisins Don’t Come From A Raisin Tree, Gets Mercilessly Roasted By Family And The Internet
  • Hundreds Of 19th-Century Black Leather Shoes Have Mysteriously Washed Up On A Beach
  • What’s Behind The “Florida Skunk Ape” Sightings? A Black Bear, Or Something Else?
  • Hubble Telescope’s Bite Of Dracula’s Chivito Reveals Chaos In The Largest Known Planet-Forming Disk
  • All Animals, Plants, And Fungi On Earth Can Be Traced Back To A Common Ancestor: The “Asgardians”
  • The Only Known (Nearly) Complete Green Mummy Just Revealed Why It’s So Green
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version