• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Lightest Known Neutron Star Might Be A Strange New Stellar Object

October 25, 2022 by Deborah Bloomfield

When stars with a mass between 10 and 25 times that of the Sun go supernova, they leave behind a neutron star: an object so dense that a teaspoon of its material weighs like a mountain. Astronomers report new measurements of HESS J1731-347, a record-breaking neutron star. With an estimated mass of just 0.77 times our Sun, it could be the lightest-ever neutron star. Well, maybe – the team also suggests that it might be something else entirely.

“Our mass estimate makes the CCO in HESS J1731-347 the lightest neutron star known to date, and potentially a more exotic object—that is, a ‘strange star’ candidate. We emphasize that while the first part of the statement above is a robust result, the second is an intriguing possibility which is consistent with our analysis,” the authors wrote in their new paper.

Advertisement

They made the estimations using X-ray observations from the XMM-Newton observatory and precise distance measurements from Gaia. HESS J1731-347 is described as the central compact object (CCO) at the core of a supernova remnant, the cloud of debris produced when a star explodes.

The explosive demise of massive stars creates some extreme conditions. During the supernova, the core of the star experiences such high pressure that the protons and electrons in the atoms present merge to produce neutrons. Neutrons are electrically neutral (as the name suggests) so there is no electromagnetic repulsion. Despite weighing like the Sun, the neutron star is not much bigger than a city. At those incredible densities, quantum mechanical effects take hold, keeping the neutron stars from turning into black holes.

Physicists theorize that during the formation, the physics at play could go a step further. 

Advertisement

Protons and neutrons are made of triplets of Up and Down quarks – that’s the standard configuration of regular matter. However, under extreme conditions, you can obtain a quark-gluon plasma, where gluons are the particles that mediate the strong nuclear force and keep protons and neutrons together in atoms. Quark matter is a different type of phase of matter again under extreme but different conditions from the quark-gluon plasma.

In particular, a configuration that appears stable in theoretical models is a strange quark star. The strange quark is a heavier version of the down quark. In this scenario, as the star collapses, all this matter is converted into strange quarks. More of observations of this and other similar objects might help us understand if these strange stars are truly out there in the cosmos.

The research is published in Nature Astronomy.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Skype alumni head to court in a battle over Starship Technologies and Wire
  2. China develops machines that can track data sent abroad by cars
  3. Canada’s Hydro One seeks bigger M&A targets to boost customers
  4. Proposal to allow Chileans to draw down pensions would hurt business climate, group says

Source Link: Lightest Known Neutron Star Might Be A Strange New Stellar Object

Filed Under: News

Primary Sidebar

  • What Happens When You Try To Freeze Oil? Because It Generally Doesn’t Form An Ice
  • Cyclical Time And Multiple Dimensions Seen in Native American Rock Art Spanning 4,000 Years Of History
  • Could T. Rex Swim?
  • Why Is My Eye Twitching Like That?!
  • First-Ever Evidence Of Lightning On Mars – Captured In Whirling Dust Devils And Storms
  • Fossil Foot Shows Lucy Shared Space With Another Hominin Who Might Be Our True Ancestor
  • People Are Leaving Their Duvets Outside In The Cold This Winter, But Does It Actually Do Anything?
  • Crows Can Hold A Grudge Way Longer Than You Can
  • Scientists Say The Human Brain Has 5 “Ages”. Which One Are You In?
  • Human Evolution Isn’t Fast Enough To Keep Up With Pace Of The Modern World
  • How Eratos­thenes Measured The Earth’s Circumference With A Stick In 240 BCE, At An Astonishing 38,624 Kilometers
  • Is The Perfect Pebble The Key To A Prosperous Penguin Partnership?
  • Krampusnacht: What’s Up With The Terrifying Christmas-Time Pagan Parades In Europe?
  • Why Does The President Pardon A Turkey For Thanksgiving?
  • In 1954, Soviet Scientist Vladimir Demikhov Performed “The Most Controversial Experimental Operation Of The 20th Century”
  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version