• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Mercury’s Steep Cliffs Might Be The Result Of The Sun Squeezing The Planet

June 24, 2025 by Deborah Bloomfield

Mercury is an odd little planet. The closest world to the Sun has some extreme surface structures, steep hills and cliffs, which have long been suspected to be the effect of the planet’s interior cooling and shrinking. However, certain features cannot be explained by shrinking alone, and a team of researchers suspects that the Sun’s gravitational pull is likely to blame.

Mercury is locked in a 3:2 spin-orbit resonance. This means that it completes three days (it rotates three times around its axis) for every two Mercury years (two orbits around the Sun). Its orbit is also a lot more eccentric than our own. While Earth’s orbit is almost a circle, Mercury’s is properly egg-shaped, so its distance from the Sun is quite variable.

These changing forces can affect the crust, and including them in a model of the possible evolution of Mercury over its 4.5 billion years of existence suggests that the planet’s surface might be shaped by the tidal forces from the gravity of the Sun.

“These orbital characteristics create tidal stresses that may leave a mark on the planet’s surface. We can see tectonic patterns on Mercury that suggest more is going on than just global cooling and contraction. Our goal was to investigate how tidal forces contribute to shaping Mercury’s crust,” Dr Liliane Burkhard, first author of the study, said in a statement. “By changing parameters such as rotational speed and orbital eccentricity, we were able to simulate and deduce how Mercury’s tectonics might have evolved.”

The tidal forces alone are not enough to form those geological features, but the model suggests that the direction peculiarities that cannot be explained by the shrinking alone can be solved with the impact of the Sun’s gravity.

“Tidal stresses have been largely overlooked until now, as they were considered to be too small to play a significant role. Our results show that while the magnitude of these stresses is not sufficient to generate faulting alone, the direction of the tidally induced shear stresses is consistent with the observed orientations of fault-slip patterns on Mercury’s surface,” explained Burkhard. “This suggests that tidal stresses may have influenced the development and shear orientation of tectonic features over long geologic time periods. This is an aspect of Mercury’s evolution that has not yet been explored.” 

Burkhard and fellow author Professor Nicolas Thomas hope to find out more using data from BepiColombo, a joint Japanese and European mission that will reach Mercury next year, and bring new insights into the geography and geology of the planet. The details provided by the spacecraft might just help us clarify how these cracks in Mercury came to be.

The study is published in the Journal of Geophysical Research: Planets.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Matillion raises $150M at a $1.5B valuation for its low-code approach to integrating disparate data sources
  2. Looking For A New Career In Tech? Get This CompTIA Training.
  3. Why You Shouldn’t Stack Rocks On Hikes And What To Do If You See Them
  4. Cannibalistic Funerals, Necropants, And A Biological Bomb For A Tomb: 9 Tales From The Darker Side Of Science

Source Link: Mercury’s Steep Cliffs Might Be The Result Of The Sun Squeezing The Planet

Filed Under: News

Primary Sidebar

  • US Just Killed NASA’s Mars Sample Return Mission – So What Happens Now?
  • Art Sleuths May Have Recovered Traces Of Da Vinci’s DNA From One Of His Drawings
  • Countries With The Most Narcissists Identified By 45,000-Person Study, And The Results Might Surprise You
  • World’s Oldest Poison Arrows Were Used By Hunters 60,000 Years Ago
  • The Real Reason You Shouldn’t Eat (Most) Raw Cookie Dough
  • Antarctic Scientists Have Just Moved The South Pole – Literally
  • “What We Have Is A Very Good Candidate”: Has The Ancestor Of Homo Sapiens Finally Been Found In Africa?
  • Europe’s Missing Ceratopsian Dinosaurs Have Been Found And They’re Quite Diverse
  • Why Don’t Snorers Wake Themselves Up?
  • Endangered “Northern Native Cat” Captured On Camera For The First Time In 80 Years At Australian Sanctuary
  • Watch 25 Years Of A Supernova Expanding Into Space Squeezed Into This 40-Second NASA Video
  • “Diet Stacking” Trend Could Be Seriously Bad For Your Health
  • Meet The Psychedelic Earth Tiger, A Funky Addition To “10 Species To Watch” In 2026
  • The Weird Mystery Of The “Einstein Desert” In The Hunt For Rogue Planets
  • NASA Astronaut Charles Duke Left A Touching Photograph And Message On The Moon In 1972
  • How Multilingual Are You? This New Language Calculator Lets You Find Out In A Minute
  • Europa’s Seabed Might Be Too Quiet For Life: “The Energy Just Doesn’t Seem To Be There”
  • Amoebae: The Microscopic Health Threat Lurking In Our Water Supplies. Are We Taking Them Seriously?
  • The Last Dogs In Antarctica Were Kicked Out In April 1994 By An International Treaty
  • Interstellar Comet 3I/ATLAS Snapped By NASA’s Europa Mission: “We’re Still Scratching Our Heads About Some Of The Things We’re Seeing”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version