• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Most Distant Gravitational Lensing Galaxy Reveals A Perfect Einstein Ring

September 27, 2023 by Deborah Bloomfield

Astronomers found an incredible cosmic object in the data from JWST, and they stumbled upon it without a particularly systematic search. In the exquisite observations from the space telescope, there was this beautiful image of galaxy JWST-ER1. And it truly is a beauty.

The object is a gravitational lens. This means that the galaxy’s mass is so high in such a relatively small volume that space-time becomes really warped. This impressive curvature creates a lens, just like the glass ones a person might use. But instead of magnifying something small around you, this gravitational lens is magnifying a galaxy that is even further away than JWST-ER1.

Advertisement

And JWST-ER1 is pretty far away. Its light has traveled for 10.3 billion years to reach us. If this is confirmed, it makes JWST-ER1 the most distant gravitational lensing object yet. It is a special type of lens, as the background object (whose light comes from 11.5 billion years ago) is right behind it, creating a full circle around JWST-ER1. This effect is known as an Einstein ring.

The Einstein ring in question is not just very pretty. It is also useful for studying the matter content of these galaxies. According to our best theory of the universe, the matter that we can see in the cosmos is outweighed five-to-one by an invisible substance that only interacts through gravity. This is known as dark matter.

Gravitational lenses are a perfect object to study dark matter, given their influence, and they might reveal that something is missing. By looking at the light of these stars, the team has estimated that in total they weigh about 110 billion times the mass of the Sun. The galaxy is quite a compact object despite its mass, something that the Hubble Space Telescope had already recognized in a class of galaxies.

These compact objects are very dense and already have half the mass that they will acquire over the course of the universe’s age. The rest of the mass will come from collisions with much smaller galaxies over the following 10 billion years. 

Advertisement

Hence the idea they form inside-out: first the core, and then the accumulation of the outskirts. Dark matter doesn’t clump, so it is more spread out in standard models used to estimate it in galaxies. In this case, within the Einstein ring, there should be 260 billion solar masses worth of dark matter.

These are truly astronomical numbers, but the Einstein ring provides an independent measure of the matter in there, and that number is even bigger. There should be 650 billion times the mass of the Sun in matter – so where is the missing 280 billion? Astronomers are not sure. There could be more dark matter, or there might be more stars.

The team commented that the object was “found by eyeballing the wonderful COSMOS-Web data,” so it will be interesting to see what future focused searches might find in similar objects.

The research has been accepted for publication in Nature Astronomy and is available on the ArXiv.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. Two children killed in missile strikes on Yemen’s Marib – state news agency
  4. We’ve Breached Six Of The Nine “Planetary Boundaries” For Sustaining Human Civilization

Source Link: Most Distant Gravitational Lensing Galaxy Reveals A Perfect Einstein Ring

Filed Under: News

Primary Sidebar

  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version