• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Mysterious Acceleration Of Earth’s First Interstellar Visitor Finally Explained

March 22, 2023 by Deborah Bloomfield

The discovery of the first interstellar visitor, a space rock called ‘Oumuamua, sent waves of excitement across the scientific community. It also started a mystery. The object had all the characteristics of an asteroid, smallish size and no visible tail approaching the Sun; and yet as it approached our star, it mysteriously accelerated, behaving more like a comet but without any evidence it was ejecting gas. Now, we may know why.

Scientists suspected some sort of outgassing. And although there has been the odd claim that the object was an alien probe of some kind, researchers set out to find how the interstellar object came to move in that weird fashion.

Advertisement

Now they think they have the answer. It was indeed down to outgassing from this cometary object. Specifically, hydrogen escaping the comet would have given it the push it needed to explain its weird motion. The researchers needed a way for hydrogen to form, and it turns out that cosmic radiation between the stars is more than capable of freeing the hydrogen from water ice.

“A comet traveling through the interstellar medium basically is getting cooked by cosmic radiation, forming hydrogen as a result. Our thought was: If this was happening, could you actually trap it in the body, so that when it entered the Solar System and it was warmed up, it would outgas that hydrogen?” lead author Dr Jennifer Bergner, a UC Berkeley assistant professor of chemistry, said in a statement. “Could that quantitatively produce the force that you need to explain the non-gravitational acceleration?”

There are actually decades’ worth of research on what high-energy particles can do to ice, going all the way back to the 1970s. The team expects cosmic rays to penetrate tens of meters into the ice and turn a quarter or more of it into hydrogen gas, as some analysis has suggested. This might not be much for a large comet but ‘Oumuamua was estimated to be around just 115 by 111 meters (377 by 364 feet) in size, and about 19 meters (62 feet) thick.  

“For a comet several kilometers across, the outgassing would be from a really thin shell relative to the bulk of the object, so both compositionally and in terms of any acceleration, you wouldn’t necessarily expect that to be a detectable effect,” Bergner explained. “But because ‘Oumuamua was so small, we think that it actually produced sufficient force to power this acceleration.”

Advertisement

The model developed by Bergner with Darryl Seligman, now at Cornell University, explains the unusual properties of ‘Oumuamua without having to add extra parameters to make it fit the observations. And this work once again supports the idea that this body was a shard of a planetesimal, maybe a Pluto-like object at the edge of another solar system.

“We had never seen a comet in the Solar System that didn’t have a dust coma. So, the non-gravitational acceleration really was weird,” Seligman said.

“The main takeaway is that ‘Oumuamua is consistent with being a standard interstellar comet that just experienced heavy processing,” Bergner added. “The models we ran are consistent with what we see in the Solar System from comets and asteroids. So, you could essentially start with something that looks like a comet and have this scenario work.”

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Poland condemns jailing of Belarus protest leaders
  2. China energy crunch triggers alarm, pleas for more coal
  3. China proposes adding cryptocurrency mining to ‘negative list’ of industries
  4. Stranded Dolphins’ Brains Show Signs Of Alzheimer’s-Like Disease

Source Link: Mysterious Acceleration Of Earth’s First Interstellar Visitor Finally Explained

Filed Under: News

Primary Sidebar

  • What Is Kakeya’s Needle Problem, And Why Do We Want To Solve It?
  • “I Wasn’t Prepared For The Sheer Number Of Them”: Cave Of Mummified Never-Before-Seen Eyeless Invertebrates Amazes Scientists
  • Asteroid Day At 10: How The World Is More Prepared Than Ever To Face Celestial Threats
  • What Happened When A New Zealand Man Fell Butt-First Onto A Powerful Air Hose
  • Ancient DNA Confirms Women’s Unexpected Status In One Of The Oldest Known Neolithic Settlements
  • Earth’s Weather Satellites Catch Cloud Changes… On Venus
  • Scientists Find Common Factors In People Who Have “Out-Of-Body” Experiences
  • Shocking Photos Reveal Extent Of Overfishing’s Impact On “Shrinking” Cod
  • Direct Fusion Drive Could Take Us To Sedna During Its Closest Approach In 11,000 Years
  • Earth’s Energy Imbalance Is More Than Double What It Should Be – And We Don’t Know Why
  • We May Have Misjudged A Fundamental Fact About The Cambrian Explosion
  • The Shoebill Is A Bird So Bizarre That Some People Don’t Even Believe It’s Real
  • Colossal’s “Dire Wolves” Are Now 6 Months Old – And They’ve Doubled In Size
  • How To Fake A Fossil: Find Out More In Issue 36 Of CURIOUS – Out Now
  • Is It True Earth Used To Take 420 Days To Orbit The Sun?
  • One Of The Ocean’s “Most Valuable Habitats” Grows The Only Flowers Known To Bloom In Seawater
  • World’s Largest Digital Camera Snaps 2,104 New Asteroids In 10 Hours, Mice With 2 Dads Father Their Own Offspring, And Much More This Week
  • Simplest Explanation For “Anomalous” Signals Coming From Underneath Antarctica Ruled Out
  • “Lizard Shampoo” And Pagan Texts Suggest “Dark Age” Medicine Wasn’t So Dark After All
  • Japanese Macaques May Mourn Their Dead – As Long As They’re Not Maggot-Infested
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version