• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Evidence Reveals The Molecules In Saltwater Aren’t Behaving Like Our Textbooks Told Us

January 25, 2024 by Deborah Bloomfield

Charged molecules do not form a boundary layer between saltwater and air as previously thought, new research reveals. Indeed, they are depleted there relative to their abundance in the liquid as a whole. Instead, at a depth of a few molecule’s diameters an ion-enrichment layer lurks, like some mythical beast waiting to surprise. The discovery upends perceptions of these boundaries that were viewed with such confidence they were written into scientific textbooks.

Life is most abundant where land meets water and sea meets sky. Understanding what occurs at these contact points is critical. Yet when one moves to the world of the very small, studying the thinnest borders between these domains, our knowledge is scanty, leading scientists to make up stories based on what they expected to find. As technology has advanced our capacity to explore these borderlands, some of the tales have turned out to be wrong.

Advertisement

Salty water produces charged particles. If the salt is the familiar sodium chloride these will be primarily Na+ and Cl–, but other salts will produce different positively charged cations and negatively charged anions. Previous studies have reported larger ions are active at the surface. Ions that are easily polarized, such as bromine and iodine anions, were especially thought to accumulate at the surface. This has led to the conclusion they form a double boundary layer there, with the two sets of charges canceling out, and orientating the nearby water atoms in a particular direction.

“Our work demonstrates that the surface of simple electrolyte solutions has a different ion distribution than previously thought and that the ion-enriched subsurface determines how the interface is organized: going from air into the bulk salt solution, one first encounters a few layers of pure water, then comes a layer enriched in ions, before reaching the bulk,” Dr Yair Litman, of the Max Planck Institute for Polymer Research and the University of Cambridge, said in a statement.

Besides having layers of water above them, Litman and colleagues found the ions defy expectations by orientating water molecules both towards and away from the surface, rather than pointing them all the same way.

The long-standing error occurred because studies of the molecules at the boundary were done using lasers to measure the surface molecules’ vibrations, a method known as vibrational sum-frequency generation (VSFG). This reveals changes in vibration intensity at specific wavelengths when salt is added to water, which was thought to indicate a build-up of ions there.

Advertisement

Although VSFG is effective at measuring the strength of vibrations, it can’t detect their orientation – specifically whether the hydrogen atoms in the water molecules point up or down.

Using a more advanced version, known as heterodyne detected-VSFG, the team examined the boundary layers in 11 types of electrolyte solutions at varying concentrations, and created computer models to make sense of what they saw.

The old models were not entirely wrong, however. Two common electrolytes, HCl and NaClO4, did indeed congregate at the surface. 

Co-author Professor Mischa Bonn said, “These types of interfaces occur everywhere on the planet, so studying them not only helps our fundamental understanding but can also lead to better devices and technologies. We are applying these same methods to study solid/liquid interfaces, which could have potential applications in batteries and energy storage.”

Advertisement

The study is published open access in Nature Chemistry.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. Two children killed in missile strikes on Yemen’s Marib – state news agency
  4. We’ve Breached Six Of The Nine “Planetary Boundaries” For Sustaining Human Civilization

Source Link: New Evidence Reveals The Molecules In Saltwater Aren't Behaving Like Our Textbooks Told Us

Filed Under: News

Primary Sidebar

  • What Is The Ocean’s Longest Fish?
  • Meet Sutter Buttes: “The World’s Smallest Mountain Range”
  • As The Rest Of The World Heats Up, “The North Atlantic Warming Hole” Is Set To Get Even Cooler
  • What Are The White Stripes You Find On Chicken Breasts?
  • The Biggest Explosion Event Since The Big Bang, Dead Sea Scrolls May Have Been Written By Original Authors Of The Bible, And Much More This Week
  • The Strange “Egg-Laying” Rockfaces Of Planet Earth
  • One Of The World’s Largest And Rarest “Fancy Red” Diamonds Has Been Studied For The First Time
  • The Simple Rule That Seems To Govern How Life Is Organized On Earth
  • This Paradisiacal Island In The Philippines Had Advanced Maritime Culture 35,000 Years Ago
  • Neanderthals Faced A Catastrophic Population Collapse 110,000 Years Ago
  • Why Travelers Are Putting Their Luggage In Hotel Bathtubs
  • NSFW Video Shows Two Male Gray Whales Seemingly Having Sex
  • Space Explosions, Dead Sea Scrolls, And Why It’s So Hard To Sex A Dino
  • This Image Of Earth (And Saturn) Will Change You
  • Watch Inquisitive Humpback Whales Blow Bubble Rings At Whale Watchers
  • How Long Did Neanderthals Live For?
  • Want To Use Dragons As Dice? Now You Can, Thanks To Math
  • Why Did Humans Start Using Fire? New Theory Suggests It Wasn’t To Cook Food
  • Controversial “Alien’s Math” Has A New Translator. Can He Reform Its Reputation?
  • How To Watch A Rare Daytime Meteor Shower This Weekend
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version