• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Gadget Might Be Able To Tell You What’s Wrong With You

December 30, 2022 by Deborah Bloomfield

‘Tis the season for winter viruses. If you’ve not succumbed to the lurgy yourself, chances are you know someone who has. We’re all used to the idea of testing for COVID by now, but it’s not always easy to get hold of a test kit, and if your symptoms are mild, you might be forgiven for assuming that it’s just a cold.

But what if there was a device that could tell you for sure whether your sniffles are due to COVID, the flu, or something else? What if it could also tell you about other health conditions you might not have known you had, and all from the comfort of your own home?

Advertisement

This may sound like science fiction, but it could soon become a reality, thanks to new research from a team in Norway and the US.

The key component of the technology that could be used to generate optical sensors precise enough to diagnose disease is called a whispering gallery microresonator. Made of germanium in this case, the job of a microresonator is to store an optical field inside a tiny space – they are generally around the thickness of a human hair.

This is where the idea of the “whispering gallery” comes into play. The famous whispering gallery in St Paul’s Cathedral in London is a great example: in here, you can whisper a word on one side of the 42-meter (137-foot) circular dome, and it can be clearly heard on the opposite side. In a similar way, as the light traveling inside the microresonator moves in circles, the optical field is amplified.

Advertisement

Microresonators themselves have been around for a while, but what the team has achieved in their new study is a massive improvement in the technology. “Our microresonator is about 100 times better than what was available before for the longwave infrared spectrum,” said first author Dingding Ren in a statement.

“We’ve built the lowest loss whispering gallery mode microresonator out there for the longwave infrared spectrum. Because the longwave infrared spectrum provides definitive information about chemicals, it provides new possibility for sensing applications”.

Because the new microresonator holds onto the light for so much longer than previous versions, it opens up a whole host of new possibilities for using the technology. As the researchers write in their study: “Many of the microresonator-based technologies that were previously not viable in the LWIR [longwave infrared spectrum] are now feasible.”

Advertisement

One of the potential applications is in the development of broadband optical frequency combs. These are converted lasers operating across a spectrum of discrete frequencies, and are found in atomic clocks, fiber optic equipment, and GPS – the creators of frequency combs shared the Nobel Prize in Physics 2005.

diagram of a laser optical frequency comb
An optical frequency comb takes a laser at a single frequency and splits it up into multiple beams, evenly spaced apart, covering the breadth of frequencies in that part of the spectrum. Image credit: hi-tech.mail.ru via Wikimedia Commons (CC-BY 3.0)

If the researchers are able to develop a broadband frequency comb at the longwave infrared spectrum, it could enable the analysis of multiple different chemicals at the same time.

“The technology is still in its initial stage when it comes to measurements in the longwave infrared spectrum of light. But our improvement gives us the possibility to identify several different chemicals in real time in the near future,” continued Ren.

Advertisement

Crucially, these advances could make this technology more affordable. Spectroscopes with the ability to analyze several chemicals at once do exist, but are only accessible to research institutions and hospitals with big budgets.

“The fact that we can now measure in the longwave IR [infrared] range…opens up many possibilities in relation to use in imaging and detection, environmental monitoring and biomedical applications,” summarized Astrid Aksnes of the Norwegian University of Science and Technology, who advised on the project.

As this field continues to develop, it may not be too long before our dreams of an at-home lurgy detector become a reality. For now, though – pass the tissues.

Advertisement

The study is published in Nature Communications.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis – Kerber defeats Stephens in the battle of the U.S. Open champs
  2. EU lawmakers call for Lebanon sanctions if new government fails
  3. Vatican hopes its pre-COP26 climate event will raise stakes in Glasgow
  4. Why Do People Have Slips Of The Tongue?

Source Link: New Gadget Might Be Able To Tell You What's Wrong With You

Filed Under: News

Primary Sidebar

  • North America’s Smallest Turtle Is The Cutest Thing You’ll Find In A Bog
  • “Unambiguous Signal” To Curb Emissions Now: Long-Lost Aerial Photos Reveal Evolution Of Antarctic Ice Shelf Collapse
  • 8 Children Have Been Born With 3 Biological Parents Each After Mitochondrial Transfer
  • First Known Observations Of Matter-Antimatter Asymmetry In Special Particle Decay
  • In 1973, NASA Sent Two Spiders Into Space To See If They Can Spin Webs – And They Learnt A Lot
  • Meet The Many Species Of Freaky Looking “Assassin Spiders” That Only Eat Other Spiders
  • Your Dog’s TV Preferences Might Reveal Their Personality
  • Some Human Gut Bacteria Can Absorb Harmful Toxic “Forever Chemicals” So They Can Be Pooped Out
  • You Could Float Through 10 Countries Before The World’s Most International River Spat You Out
  • Enormous Coronal Hole And Beast-Like Crawling Prominences Dazzle On The Active Sun
  • Dramatic Drone Footage Of Iceland’s Latest Volcanic Eruption Shows An Epic Scene From Hell
  • A Shrimp That Lives In A Tree? Indonesia’s Cyclops Mountains Are Home To Some Seriously Strange Wildlife
  • Is NASA’s Claim That Saturn Could Float On Water Really True?
  • Pangea Proxima: This Is What Planet Earth May Look Like 250 Million Years In The Future
  • The Story Of Dogxim, The Fox-Dog Hybrid That Shouldn’t Have Existed
  • Neanderthal Butchers From Different Caves Had Their Own Specialities
  • On July 20, The US And Canada Will Witness The Little-Known Seven Sisters Eclipse
  • First-Ever Giant Ichthyosaur Soft Tissues Preserved In “Extraordinary Fossil” Dating Back 183 Million Years
  • The Worst Day In History For Humans
  • Could You Survive Being Sucked Into A Tornado?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version