• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Heaviest Antimatter Atomic Nucleus Discovered Yet

August 22, 2024 by Deborah Bloomfield

Scientists at the Relativistic Heavy Ion Collider have discovered the heaviest atomic nucleus of antimatter ever found, and it’s a weird one. Even its matter counterpart is weird as it contains a particle made of a strange quark. But before we get into all that weirdness let’s share the name of this new peculiar particle: antihyperhydrogen-4.

Advertisement

The particles at the center of atomic nuclei are usually protons and neutrons. These are made of quarks. Specifically, they are made of up quarks and down quarks. A proton is made of two up quarks and one down, a neutron has two down and one up. But there are four other types of quarks in nature, although some of them can only exist briefly and form at very high energy. All of these quarks have antiquarks, the same mass but an opposite electric charge.

One of these heavier quarks is called the strange quark and can be used to make a variety of particles that are classed under the broad terms of hyperons. The Relativistic Heavy Ion Collider smashes atoms together to recreate the conditions from the first instants after the Big Bang and hopefully help researchers understand one of the biggest puzzles in physics: why the universe became dominated by matter and not antimatter. Each collision produces new particles and members of the STAR Collaboration analyzed 6 billion particle collisions to identify this new antimatter atomic nucleus.

“Our physics knowledge about matter and antimatter is that, except for having opposite electric charges, antimatter has the same properties as matter — same mass, same lifetime before decaying, and same interactions,” STAR collaborator Junlin Wu, a graduate student at the Joint Department for Nuclear Physics, Lanzhou University and Institute of Modern Physics (IMP), China, said in a statement. “Why our universe is dominated by matter is still a question, and we don’t know the full answer.”

“To study the matter-antimatter asymmetry, the first step is to discover new antimatter particles,” said STAR physicist Hao Qiu, Wu’s advisor at IMP. “That’s the basic logic behind this study.”

Advertisement

So, to antihyperhydrogen-4. This atomic nucleus is made of one antiproton, two antineutrons, and one antilambda (the specific antihyperon). The experiment has previously produced antihelium-4, which is made of two antiprotons and two antineutrons and is slightly lighter than the antihyperhydrogen.

“It is only by chance that you have these four constituent particles emerge from the RHIC collisions close enough together that they can combine to form this antihypernucleus,” said Brookhaven Lab physicist Lijuan Ruan, one of two co-spokespersons for the STAR Collaboration.

Crucial to this discovery is the team’s previous experience with antihelium. Antihyperhydrogen-4 actually decays into antihelium-4 and a pion (a particle made of a quark and antiquark). The team looked at the tracks of the particles of antihelium and positive pions and if they started at the same point, they were likely the product of an antihyperhydrogen-4 decaying. They found 16 events that are likely to be the actual antimatter particles.

Analysis of their properties didn’t show any immediate violation of the symmetry of the universe, so we have not been handed the solution of why it is made of matter instead of antimatter. We know that there must be a difference between matter and antimatter. If there wasn’t, we wouldn’t be here because all the matter and antimatter would have annihilated and turned into pure energy.

Advertisement

So where is this difference? Particles interact in specific ways which are underpinned by the laws of physics. These laws respect certain laws of symmetry and scientists look there for violations. Is antimatter behaving in ways that would make it less likely to survive compared to matter? Or has it got properties that don’t match the theory? So far we have seen hints, but nothing concrete. Finding heavier particles is important because they could make it easier to see the potential variations.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. VW CEO says smart cars, not e-cars, are ‘gamechanger’
  2. El Salvador body to investigate complaints about government’s bitcoin purchases, ATM kiosks
  3. The Most Common Passwords Of 2023 Are Ridiculous, Hilarious, And Worrying
  4. The Famous “March Of Progress” Image Is Wildly Wrong

Source Link: New Heaviest Antimatter Atomic Nucleus Discovered Yet

Filed Under: News

Primary Sidebar

  • Unethical Experiments: When Scientists Really Should Have Stopped What They Were Doing Immediately
  • The First Humans Were Hunted By Leopards And Weren’t The Apex Predators We Thought They Were
  • Earth’s Passage Through The Galaxy Might Be Written In Its Rocks
  • What Is An Einstein Cross – And Why Is The Latest One Such A Unique Find?
  • If We Found Life On Mars, What Would That Mean For The Fermi Paradox And The Great Filter?
  • The Longest Living Mammals Are Giants That Live Up To 200 Years In The Icy Arctic
  • Entirely New Virus Detected In Bat Urine, And It’s Only The 4th Of Its Kind Ever Isolated
  • The First Ever Full Asteroid History: From Its Doomed Discovery To Collecting Its Meteorites
  • World’s Oldest Pachycephalosaur Fossil Pushes Back These Dinosaurs’ Emergence By 15 Million Years
  • The Hole In The Ozone Layer Is Healing And On Track For Full Recovery In The 21st Century, Thanks To Science
  • First Sweet Potato Genome Reveals They’re Hybrids With A Puzzling Past And 6 Sets Of Chromosomes
  • Why Is The Top Of Canada So Sparsely Populated? Meet The “Canadian Shield”
  • Humans Are In The Middle Of “A Great Evolutionary Transition”, New Paper Claims
  • Why Do Some Toilets Have Two Flush Buttons?
  • 130-Year-Old Butter Additive Discovered In Danish Basement Contains Bacteria From The 1890s
  • Prehistoric Humans Made Necklaces From Marine Mollusk Fossils 20,000 Years Ago
  • Zond 5: In 1968 Two Soviet Steppe Tortoises Beat Humans To Orbiting Around The Moon
  • Why Cats Adapted This Defense Mechanism From Snakes
  • Mother Orca Seen Carrying Dead Calf Once Again On Washington Coast
  • A Busy Spider Season Is Brewing: Why This Fall Could See A Boom Of Arachnid Activity
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version