• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Heaviest Antimatter Atomic Nucleus Discovered Yet

August 22, 2024 by Deborah Bloomfield

Scientists at the Relativistic Heavy Ion Collider have discovered the heaviest atomic nucleus of antimatter ever found, and it’s a weird one. Even its matter counterpart is weird as it contains a particle made of a strange quark. But before we get into all that weirdness let’s share the name of this new peculiar particle: antihyperhydrogen-4.

Advertisement

The particles at the center of atomic nuclei are usually protons and neutrons. These are made of quarks. Specifically, they are made of up quarks and down quarks. A proton is made of two up quarks and one down, a neutron has two down and one up. But there are four other types of quarks in nature, although some of them can only exist briefly and form at very high energy. All of these quarks have antiquarks, the same mass but an opposite electric charge.

One of these heavier quarks is called the strange quark and can be used to make a variety of particles that are classed under the broad terms of hyperons. The Relativistic Heavy Ion Collider smashes atoms together to recreate the conditions from the first instants after the Big Bang and hopefully help researchers understand one of the biggest puzzles in physics: why the universe became dominated by matter and not antimatter. Each collision produces new particles and members of the STAR Collaboration analyzed 6 billion particle collisions to identify this new antimatter atomic nucleus.

“Our physics knowledge about matter and antimatter is that, except for having opposite electric charges, antimatter has the same properties as matter — same mass, same lifetime before decaying, and same interactions,” STAR collaborator Junlin Wu, a graduate student at the Joint Department for Nuclear Physics, Lanzhou University and Institute of Modern Physics (IMP), China, said in a statement. “Why our universe is dominated by matter is still a question, and we don’t know the full answer.”

“To study the matter-antimatter asymmetry, the first step is to discover new antimatter particles,” said STAR physicist Hao Qiu, Wu’s advisor at IMP. “That’s the basic logic behind this study.”

Advertisement

So, to antihyperhydrogen-4. This atomic nucleus is made of one antiproton, two antineutrons, and one antilambda (the specific antihyperon). The experiment has previously produced antihelium-4, which is made of two antiprotons and two antineutrons and is slightly lighter than the antihyperhydrogen.

“It is only by chance that you have these four constituent particles emerge from the RHIC collisions close enough together that they can combine to form this antihypernucleus,” said Brookhaven Lab physicist Lijuan Ruan, one of two co-spokespersons for the STAR Collaboration.

Crucial to this discovery is the team’s previous experience with antihelium. Antihyperhydrogen-4 actually decays into antihelium-4 and a pion (a particle made of a quark and antiquark). The team looked at the tracks of the particles of antihelium and positive pions and if they started at the same point, they were likely the product of an antihyperhydrogen-4 decaying. They found 16 events that are likely to be the actual antimatter particles.

Analysis of their properties didn’t show any immediate violation of the symmetry of the universe, so we have not been handed the solution of why it is made of matter instead of antimatter. We know that there must be a difference between matter and antimatter. If there wasn’t, we wouldn’t be here because all the matter and antimatter would have annihilated and turned into pure energy.

Advertisement

So where is this difference? Particles interact in specific ways which are underpinned by the laws of physics. These laws respect certain laws of symmetry and scientists look there for violations. Is antimatter behaving in ways that would make it less likely to survive compared to matter? Or has it got properties that don’t match the theory? So far we have seen hints, but nothing concrete. Finding heavier particles is important because they could make it easier to see the potential variations.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. VW CEO says smart cars, not e-cars, are ‘gamechanger’
  2. El Salvador body to investigate complaints about government’s bitcoin purchases, ATM kiosks
  3. The Most Common Passwords Of 2023 Are Ridiculous, Hilarious, And Worrying
  4. The Famous “March Of Progress” Image Is Wildly Wrong

Source Link: New Heaviest Antimatter Atomic Nucleus Discovered Yet

Filed Under: News

Primary Sidebar

  • Want Your Career To Take The Next Step? How Scientific Conferences Can Be A Catalyst For Change
  • Why Do Little Birds Always Ride On Rhinos? It’s An Incredibly Deep Relationship
  • The World’s Rarest Great Ape Just Got Even Rarer
  • This Is The First Ever Map Of The Entire Sky In An Incredible 102 Infrared Colors
  • Was Jesus Christ Actually Born On December 25?
  • Is It True There Are Two Places On Earth Where You Can Walk Directly On The Mantle?
  • Around 90 Percent Of People Report Personality Changes After An Organ Transplant – Why?
  • This Worm Quietly Lived In A Lab For Decades, But They Had No Idea Just How Old It Truly Was
  • Fewer Than 50 Of These Carnivorous “Large Mouth” Plants Exist In The World – Will Humans Drive Them To Extinction?
  • These Are The Best Fictional Spaceships, According To Astronauts – What Are Yours?
  • Can I See Comet 3I/ATLAS From Earth During Its Closest Approach Today? Yes, Here’s How
  • The Earliest Winter Solstice Rituals Go All The Way Back To The Stone Age
  • We Were F*&@ing Right – Swearing Is Good For You And Now We Know Why
  • Why Do Wombats Have Square Poop? New Discovery Reveals How Their “Latrines” May Act Like Dating Apps
  • IFLScience The Big Questions: Answering Some Of The Biggest Scientific Mysteries Of 2025
  • Astronomers Catch Incredible First Direct Images Of Objects Colliding In Another Star System
  • Billionaire Jared Isaacman Finally Confirmed As Head Of NASA, As Agency Faces Uncertain Future
  • Something Just Crashed Into The Moon – And Astronomers Captured The Whole Event
  • These “Living Rocks” Are Among The Oldest Surviving Life And Are Champion Carbon Dioxide Absorbers
  • Ambitious Iguana “Love Island” For Near-Extinct Reptiles Becomes Epic Conservation Success Story
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version