• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Sponge-Like Biomass Foam Found To Soak Up 99.9 Percent Of Microplastics

December 13, 2024 by Deborah Bloomfield

Microplastics are everywhere, which is why scientists have been dedicating a lot of time to trying to figure out a way to safely extract them. Now, it seems a super sponge-like foam that borrows the soaking skills of cotton and squid may be a promising candidate, as it was found to remove 98 to 99.9 percent of microplastics from water samples studied.

What’s more, the foam is sustainable and environmentally adaptable, without carrying the neuston-zone-destroying risks of some ocean-hoovering approaches. As well as targeting microplastics already in the environment, it could be used to treat water at factories before it gets released, working to both reduce the microplastics already in nature and those being leaked into it.

Advertisement

“Microplastics entering terrestrial and aquatic habitats are anticipated to continuously increase for thousands of years, due to the alarming volumes of plastic waste in the environment (~4.6 billion metric tons) and the difficulty of degradation under natural conditions,” wrote the study authors.

“The planet is under great threat from microplastics, and aquatic ecosystems are the first to suffer, as they provide convenient places for microplastics, which can combine with other contaminants and be ingested by multiple levels of organisms. The development of widely adapted approaches for microplastic remediation in the aqueous environment is urgently demanded.” 

e

(A) The recipe for Ct-Cel biomass foam includes cellulose and β-chitin with some clever chemistry. (B) Microplastic removal by the foam occurs through physical interception, electrostatic attraction, and multiple intermolecular interactions thanks to the abundance of reactive functional groups.

Image credit: Y Wu et al, 2024 Science Advances (CC BY-NC 4.0)

To address that demand, they created a sponge-like substance called Ct-Cel biomass foam that combines two substances found in nature: cellulose from cotton, and chitin from squid bone. Squid are famously squishy, but inside their soft tissues sits a small pen-shaped skeleton made of chitin.

The two substances stuck together nicely when the team broke their original hydrogen bonds and induced intermolecular interactions of cellulose and chitin, creating a stable framework with loads of activated hydrogen boding sites for microplastic adsorption. By running adsorption tests as well as computational studies, they observed that it could capture microplastics in several ways: physical interception, electrostatic attraction, as well as multiple intermolecular interactions.

Advertisement

They then took the Ct-Cel sponge for a spin with four water types: agriculture irrigation, lake water, still water, and coastal water, and after an impressive five cycles it was still showing high removal efficiency of more than 95 percent. That it can be reused means that it could well be scalable, and the researchers hope that, with a bit more testing, it could be rolled out to start tackling the ongoing microplastics crisis.

“The Ct-Cel foam has great potential to be used in the extraction of microplastic from complex water bodies,” concluded the authors. “Thus, our design principles would facilitate the future development of practical and sustainable strategies based on biomass foams to address microplastic pollution.”

Ever wondered what microplastics are doing to our health? Sign up to our newsletter to receive the February issue of CURIOUS that will tackle the question in our Deep Dive feature.

The study is published in the journal Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. No ‘magic wand’ to fix Lebanon crisis, new prime minister says
  2. Despite preparation, California pipeline operator may have taken hours to stop leak
  3. “Unique” 2,000-Year-Old Roman Phallus, Face, And Horn Carving Discovered In Spain
  4. Iconic Ancient Uffington White Horse Fattened Up And Returned To Its Former Glory

Source Link: New Sponge-Like Biomass Foam Found To Soak Up 99.9 Percent Of Microplastics

Filed Under: News

Primary Sidebar

  • How Long Did Dinosaurs Live? “It’s A Big Surprise To People That Work On Them”
  • NASA’s Mysterious Announcement: “Clearest Sign Of Life That We’ve Ever Found On Mars”
  • New Brain Implant Can Decode Your Internal Monologue, Raising Fears Of Mind Reading
  • “Immediate, Sustained, And Devastating” Pain: The Most Venomous Mammal Packs An Extremely Nasty Sting
  • Domestic Cats Keeping Making Hybrids. That’s A Problem, And Yes – That Includes Some Pets
  • These Strange Little Lizards Have Toxic Green Blood, And No One Knows Exactly Why
  • How Does 2-In-1 Shampoo And Conditioner Work?
  • There Are 2-Billion-Year-Old “Millennium Rocks” In A Suburb, Hundreds Of Miles From Their Primeval Home
  • “That’s A Hellfire Missile Smacking Into That UFO”: Strange Video Emerges From US UAP Hearing
  • In 40,000 Years, Voyager 1 Will Have A Close Encounter With Gliese 445
  • Abnormally Long Gamma Ray Burst Unlike Anything We’ve Seen Before Baffles Astronomers
  • Critically Endangered Shark Meat Is Being Sold In US Stores For As Little As $2.99
  • Infectious Mouth Bacteria Lurking In Artery Plaques Could Be Behind Some Heart Attacks
  • What Would You Reach If You Kept Digging Under Antarctica?
  • First Visible Time Crystals Ever Made Have Astonishing Complexity And Practical Potential
  • “Something Undeniably Special”: The Chi Cygnids, A New Five-Yearly Meteor Shower, Peak This Month
  • A 200-Meter-Tall Event We Didn’t See Sent Signals Through The Earth For Nine Whole Days
  • Why Are So Many Volcanoes Underwater?
  • In 1977, A Hybrid Was Born In A Zoo. What It Taught Us Could Save One Of The Planet’s Most Endangered Species
  • How To Park A Dangerous Asteroid So It Doesn’t Bite You Later
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version