• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Way To Hunt Dark Matter: Precise Atomic Clocks And Lasers

February 10, 2025 by Deborah Bloomfield

Dark matter is a hypothetical form of matter believed to be everywhere, outnumbering regular matter (what we’re made of) 5-to-1. It doesn’t emit or interact with light, so it is invisible to our instruments – that’s why we call it dark. We know that it ought to be there because observations of the universe match our models only if there is a lot more matter out there. Still, it is difficult to find.

ADVERTISEMENT GO AD FREE

There are a few possibilities when it comes to the nature of dark matter. It could be made of particles called weakly interacting massive particles (WIMPs), much heavier than a proton, that could be detected by the occasional collision with atoms. Or it could made of axions, particles that are so light that they weigh just a fraction of an electron.

Many labs are trying to catch WIMPs with dedicated detectors. Catching axions is a lot more difficult, but an international team has worked out an approach. Everything is both a wave and a particle (yes, technically even you), but the lighter something is, the easier one can see the wave-like nature. So the team behind a recent paper used lasers and two atomic clocks to measure the potential effect of the axions.

“Despite many theories and experiments scientists are yet to find dark matter, which we think of as the ‘glue’ of the galaxy holding everything together,” co-lead researcher Ashlee Caddell, from the University of Queensland, said in a statement.

“Our study used a different approach – analysing the data from a network of ultra-stable lasers connected by fibre optic cables, as well as from two atomic clocks aboard GPS satellites. Dark matter in this case acts like a wave, because its mass is very very low. We use the separated clocks to try to measure changes in the wave, which would look like clocks displaying different times or ticking at different rates, and this effect gets stronger if the clocks are further apart.”

The method provides the first constraints on how certain dark matter might interact with regular matter 

“By comparing precision measurements across vast distances, we identified the subtle effects of oscillating dark matter fields that would otherwise cancel themselves out in conventional setups,” Caddell added. “Excitingly, we were able to search for signals from dark matter models that interact universally with all atoms, something that has eluded traditional experiments.”

ADVERTISEMENT GO AD FREE

There has been some circumstantial evidence from gravitational lensing, suggesting that axions are a better fit for dark matter. This method allows researchers to actually explore that range of masses.

“Scientists will now be able to investigate a broader range of dark matter scenarios, and perhaps answer some fundamental questions about the fabric of the universe,” study co-author Dr Benjamin Roberts said.

“This work also highlights the power of international collaboration and cutting-edge technology, using [Physikalisch-Technische Bundesanstalt]’s state-of-the-art atomic clocks and [University of Queensland]’s expertise in combining precision measurements and fundamental physics.”

The paper is published in Physical Review Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Philippines defense minister says U.S. treaty needs comprehensive review
  2. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  3. US Intelligence Agencies Further Divided On “Lab Leak” Theory Of COVID-19 Origins
  4. Where Do The US Presidential Candidates Stand On Climate Change?

Source Link: New Way To Hunt Dark Matter: Precise Atomic Clocks And Lasers

Filed Under: News

Primary Sidebar

  • A New Way Of Looking At Einstein’s Equations Could Reveal What Happened Before The Big Bang
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations, NASA Reveals Comet 3I/ATLAS Images From 8 Missions, And Much More This Week
  • The Latest Internet Debate: Is It More Efficient To Walk Around On Massive Stilts?
  • The Trump Administration Wants To Change The Endangered Species Act – Here’s What To Know
  • That Iconic Lion Roar? Turns Out, They Have A Whole Other One That We Never Knew About
  • What Are Gravity Assists And Why Do Spacecraft Use Them So Much?
  • In 2026, Unique Mission Will Try To Save A NASA Telescope Set To Uncontrollably Crash To Earth
  • Blue Origin Just Revealed Its Latest New Glenn Rocket And It’s As Tall As SpaceX’s Starship
  • What Exactly Is The “Man In The Moon”?
  • 45,000 Years Ago, These Neanderthals Cannibalized Women And Children From A Rival Group
  • “Parasocial” Announced As Word Of The Year 2025 – Does It Describe You? And Is It Even Healthy?
  • Why Do Crocodiles Not Eat Capybaras?
  • Not An Artist Impression – JWST’s Latest Image Both Wows And Solves Mystery Of Aging Star System
  • “We Were Genuinely Astonished”: Moss Spores Survive 9 Months In Space Before Successfully Reproducing Back On Earth
  • The US’s Surprisingly Recent Plan To Nuke The Moon In Search Of “Negative Mass”
  • 14,400-Year-Old Paw Prints Are World’s Oldest Evidence Of Humans Living Alongside Domesticated Dogs
  • The Tribe That Has Lived Deep Within The Grand Canyon For Over 1,000 Years
  • Finger Monkeys: The Smallest Monkeys In The World Are Tiny, Chatty, And Adorable
  • Atmospheric River Brings North America’s Driest Place 25 Percent Of Its Yearly Rainfall In A Single Day
  • These Extinct Ice Age Giant Ground Sloths Were Fans Of “Cannonball Fruit”, Something We Still Eat Today
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version