• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Nuclear Clock Breakthrough Is Another Step Forward In Extreme Timekeeping

September 4, 2024 by Deborah Bloomfield

Ultraprecise timekeeping has made major leaps in the last several years. There are clocks that are hundreds of times more accurate than the standard atomic clocks that are employed across the world. Those are known as optical atomic clocks and have set many records recently. But researchers think they can go even further. They can build a nuclear clock.

Advertisement

The secret of extreme timekeeping is to be able to measure an almost instantaneous beat very well. In atomic clocks, the beat is electrons jumping between energy levels. In traditional atomic clocks that is done using microwaves and cesium atoms, but in optical atomic clocks, which are way more accurate, scientists use different wavelengths and different atoms. Still, it’s the electron transition that matters.

But in nuclear clocks, the changes in energy levels are happening in the nucleus, which is a lot more stable compared to the electrons at the edge of the atom. It usually requires high-energy light for these jumps to occur, namely X-rays; but scientists have known for a while that thorium-229 has the lowest energy jump of any atom, and it requires ultraviolet light, which is much easier to use.

The problem is that a precise value of the frequency for this jump was not known. So researchers have now used an extremely precise optical atomic clock, a crystal featuring thorium-229, and a laser to measure this value – the first crucial step in creating a whole new way to measure time.  

“Imagine a wristwatch that wouldn’t lose a second even if you left it running for billions of years,” senior author Jun Ye, from the National Institute of Standards and Technology, said in a statement. “While we’re not quite there yet, this research brings us closer to that level of precision.” 

You might be wondering why this precision is needed. It might not appear to have an immediate practical application, but we are indirectly using atomic clocks all the time. Our banks use them to transfer money, they are used in navigation systems, and more. So more precise timekeeping means improvements in all of those, but also faster internet speeds and more secure communication. And while the road is long, this demonstration shows that a new future for timekeeping is at hand.

Advertisement

“With this first prototype, we have proven: Thorium can be used as a timekeeper for ultra-high-precision measurements. All that is left to do is technical development work, with no more major obstacles to be expected,” co-author Thorsten Schumm, from Vienna University of Technology, said in another statement.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: Nuclear Clock Breakthrough Is Another Step Forward In Extreme Timekeeping

Filed Under: News

Primary Sidebar

  • You May Believe This Widely Spread Myth About How Microwave Ovens Work
  • If You Had A Pole Stretching From England To France And Yanked It, Would The Other End Move Instantly?
  • This “Dead Leaf” Is Actually A Spider That’s Evolved As A Master Of Disguise And Trickery
  • There Could Be 10,000 More African Forest Elephants Than We Thought – But They’re Still Critically Endangered
  • After Killing Half Of South Georgia’s Elephant Seals, Avian Flu Reaches Remote Island In The Indian Ocean
  • Jaguars, Disease, And Guns: The Darién Gap Is One Of Planet Earth’s Last Ungovernable Frontiers
  • The Coldest Place On Earth? Temperatures Here Can Plunge Down To -98°C In The Bleak Midwinter
  • ESA’s JUICE Spacecraft Imaged Comet 3I/ATLAS As It Flew Towards Jupiter. We’ll Have To Wait Until 2026 To See The Photos
  • Have We Finally “Seen” Dark Matter? Galactic Gamma-Ray Halo May Be First Direct Evidence Of Universe’s Invisible “Glue”
  • What Happens When You Try To Freeze Oil? Because It Generally Doesn’t Form An Ice
  • Cyclical Time And Multiple Dimensions Seen in Native American Rock Art Spanning 4,000 Years Of History
  • Could T. Rex Swim?
  • Why Is My Eye Twitching Like That?!
  • First-Ever Evidence Of Lightning On Mars – Captured In Whirling Dust Devils And Storms
  • Fossil Foot Shows Lucy Shared Space With Another Hominin Who Might Be Our True Ancestor
  • People Are Leaving Their Duvets Outside In The Cold This Winter, But Does It Actually Do Anything?
  • Crows Can Hold A Grudge Way Longer Than You Can
  • Scientists Say The Human Brain Has 5 “Ages”. Which One Are You In?
  • Human Evolution Isn’t Fast Enough To Keep Up With Pace Of The Modern World
  • How Eratos­thenes Measured The Earth’s Circumference With A Stick In 240 BCE, At An Astonishing 38,624 Kilometers
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version