• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Nuclear Clock Breakthrough Is Another Step Forward In Extreme Timekeeping

September 4, 2024 by Deborah Bloomfield

Ultraprecise timekeeping has made major leaps in the last several years. There are clocks that are hundreds of times more accurate than the standard atomic clocks that are employed across the world. Those are known as optical atomic clocks and have set many records recently. But researchers think they can go even further. They can build a nuclear clock.

Advertisement

The secret of extreme timekeeping is to be able to measure an almost instantaneous beat very well. In atomic clocks, the beat is electrons jumping between energy levels. In traditional atomic clocks that is done using microwaves and cesium atoms, but in optical atomic clocks, which are way more accurate, scientists use different wavelengths and different atoms. Still, it’s the electron transition that matters.

But in nuclear clocks, the changes in energy levels are happening in the nucleus, which is a lot more stable compared to the electrons at the edge of the atom. It usually requires high-energy light for these jumps to occur, namely X-rays; but scientists have known for a while that thorium-229 has the lowest energy jump of any atom, and it requires ultraviolet light, which is much easier to use.

The problem is that a precise value of the frequency for this jump was not known. So researchers have now used an extremely precise optical atomic clock, a crystal featuring thorium-229, and a laser to measure this value – the first crucial step in creating a whole new way to measure time.  

“Imagine a wristwatch that wouldn’t lose a second even if you left it running for billions of years,” senior author Jun Ye, from the National Institute of Standards and Technology, said in a statement. “While we’re not quite there yet, this research brings us closer to that level of precision.” 

You might be wondering why this precision is needed. It might not appear to have an immediate practical application, but we are indirectly using atomic clocks all the time. Our banks use them to transfer money, they are used in navigation systems, and more. So more precise timekeeping means improvements in all of those, but also faster internet speeds and more secure communication. And while the road is long, this demonstration shows that a new future for timekeeping is at hand.

Advertisement

“With this first prototype, we have proven: Thorium can be used as a timekeeper for ultra-high-precision measurements. All that is left to do is technical development work, with no more major obstacles to be expected,” co-author Thorsten Schumm, from Vienna University of Technology, said in another statement.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: Nuclear Clock Breakthrough Is Another Step Forward In Extreme Timekeeping

Filed Under: News

Primary Sidebar

  • Hominin Vs. Hominid: What’s The Difference?
  • Experimental Alzheimer’s Drug Could Have The Power To Halt Disease Before Symptoms Even Start
  • Al Naslaa: What Made This Enormous Boulder In Saudi Arabia Split In Two? Nobody’s Quite Sure
  • The Amazon Is Entering A “Hypertropical” Climate For The First Time In 10 Million Years
  • What Scientists Saw When They Peered Inside 190-Million-Year-Old Eggs And Recreated Some Of The World’s Oldest Dinosaur Embryos
  • Is 1 Dog Year Really The Same As 7 Human Years?
  • Were Dinosaur Eggs Soft Like A Reptile’s, Or Hard Like A Bird’s?
  • What Causes All The Symptoms Of Long COVID And ME/CFS? The Brainstem Could Be The Key
  • The Only Bugs In Antarctica Are Already Eating Microplastics
  • Like Mars, Europa Has A Spider Shape, And Now We Might Know Why
  • How Did Ancient Wolves Get Onto This Remote Island 5,000 Years Ago?
  • World-First Footage Of Amur Tigress With 5 Cubs Marks Huge Conservation Win
  • Happy Birthday, Flossie! The World’s Oldest Living Cat Just Turned 30
  • We Might Finally Know Why Humans Gave Up Making Our Own Vitamin C
  • Hippo Birthday Parties, Chubby-Cheeked Dinosaurs, And A Giraffe With An Inhaler: The Most Wholesome Science Stories Of 2025
  • One Of The World’s Rarest, Smallest Dolphins May Have Just Been Spotted Off New Zealand’s Coast
  • Gaming May Be Popular, But Can It Damage A Resume?
  • A Common Condition Makes The Surinam Toad Pure Nightmare Fuel For Some People
  • In 1815, The Largest Eruption In Recorded History Plunged Earth Into A Volcanic Winter
  • JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version