• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Observations Of Distant Galaxies Throw Up New Mystery For Dark Matter

July 18, 2024 by Deborah Bloomfield

Observations of the gravitational lensing of galaxies have thrown up a new mystery for our best understanding of cosmology; how galaxies are held together with dark matter.

Advertisement

In 1933, Swiss astronomer Fritz Zwicky studied the Coma Cluster – a large galaxy cluster more than 20 million light-years in diameter, containing thousands of galaxies – and found something quite odd. Galaxies within the cluster were moving at such high speeds that they should fly away from each other, given the amount of visible mass within the galaxies and the cluster. He hypothesized that the region must contain a large amount of “Dunkle Materie” (dark matter) in order to keep the cluster stable. 

If that sounds unintuitive to you, here is it explained very simply with a rope through a basketball.



Further work, conducted by Vera Rubin and Kent Ford, plotted the velocities of stars within spiral galaxies by looking at the shift in wavelengths of light as they move toward and away from us. They found the same odd phenomenon as Zwicky, and many, many observations since. Stars at the sparsely-populated edges of spiral galaxies were moving just as fast as stars toward their galactic centers.

Physicists largely concluded (though other ideas are available) that there is a mysterious substance in these galaxies and galaxy clusters known as “dark matter” which doesn’t emit, reflect, or absorb light, and only interacts with normal matter through gravity. What’s more, there should be about five times as much of it in the observable universe than regular matter which makes up the stars, planets, dust, and everything else we enjoy.

Advertisement

But nearly a century after it was first proposed, we still don’t know what it is. In a new study, a team of scientists at Case Western Reserve University have found puzzling observations that could throw a new spanner in the works for dark matter models. The team looked at a catalog of 130,000 galaxies and analyzed how much a galaxy in the foreground gravitationally lensed galaxies in the background. This is where objects with large mass bend spacetime, making light bend around them.



If the observed fast rotation of stars at the edge of galaxies is the result of dark matter clumped within them, we should expect the dark matter halo to drop off at a certain distance from the galactic center. However, the team found that the bending of light continued at much further distances than dark matter models would expect. 

“The circular velocity curves are consistent with being flat out to hundreds of kiloparsecs,” the team explains in their paper, “perhaps even 1 Mpc, with no sign of having reached the edge of the DM halo.”

A chart showing velocity of stars remains flat out to 750 kiloparsecs.

Rotation speed remains flat out to 750 kiloparsecs, according to the study.

Image credit: Case Western Reserve University

The observations are challenging to existing models, which would expect a drop-off in velocities of orbiting stars as you move further away from the galactic center. A star placed in these further out regions, according to the team, would show the same flat velocities as stars at the visible galactic edge. 

According to the team, it is possible that the observations suggest that dark matter halos extend much further than we thought. Alternatively, if the effect is confirmed or found to extend even further, it could indicate that our understanding of gravity is missing something.

“The implications of this discovery are profound,” Stacy McGaugh, professor and director of astronomy in the College of Arts and Sciences, said in a statement. “It not only could redefine our understanding of dark matter, but also beckons us to explore alternative theories of gravity, challenging the very fabric of modern astrophysics.”

There are alternatives to dark matter cosmology, including Modified Newtonian Dynamics (MOND).  In MOND, the odd rotation of galaxies is explained by modifications to gravity experienced by objects with very low acceleration, like those at the edge of galaxies. When gravitational acceleration is tiny enough, different gravitational behavior takes place.

Advertisement

Dark matter remains the explanation favored by the majority of physicists, having the advantage that it allows scientists to make predictions about the universe and objects within it, which MOND has not yet been able to do. Its explanation is also challenged by the existence of the bullet cluster, a collision between two galaxy clusters which shows mass distribution consistent with dark matter models.

It is nevertheless an interesting set of observations and requires further attention and investigation. Perhaps dark matter halos extend further than we thought, or our understanding of gravity is incorrect. Thankfully, we may soon get a more complete picture as the European Space Agency’s Euclid mission maps the large-scale structure of the Universe.

The study is published in the Astrophysical Journal Letters

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Sendoso nabs $100M as its corporate gifting platform passes 20,000 customers
  2. Nasdaq futures up 1% as tech stocks rebound
  3. Listen To The “Innate” Twinkling Of Stars For The First Time
  4. People Are Asking: Where Do Rivers Come From?

Source Link: Observations Of Distant Galaxies Throw Up New Mystery For Dark Matter

Filed Under: News

Primary Sidebar

  • DNA From Greenland Sled Dogs – Maybe The World’s Oldest Breed – Reveals 1,000 Years Of Arctic History
  • Why Doesn’t Moonrise Shift By The Same Amount Each Night?
  • Moa De-Extinction, Fashionable Chimps, And Robot Surgery – No Human Required
  • “Human”: Powerful New Images Mark The Most Scientifically Accurate “Hyper-Real 3D Models Of Human Species Ever”
  • Did We Accidentally Leave Life On The Moon In 2019 – And Could We Revive It?
  • 1.8 Million Years Ago, Two Extinct Humans Had One Of The Gnarliest Deaths In History
  • “Powerful Image” Of One Of The World’s Rarest Tigers Exposes The Real Danger In Taman Negara
  • Evolution, Domestication, And A Lot Of Very Good Boys: How Wolves Became Dogs
  • Why Do Orcas Have White Spots Near Their Eyes?
  • Tomb Of First King Of Ancient Maya City Discovered In Belize
  • The Real Reason The Tip Of Your Tape Measure Wiggles Like That
  • The “Haunting” Last Message From NASA’s Opportunity Rover, Sent From Inside A Planet-Wide Storm
  • Adorable Video Proves Not All Gorillas Hate The Rain. It Might Even Win One A Mate
  • 5,000-Year-Old Rock Art May Show One Of Ancient Egypt’s First Rulers
  • Alzheimer’s-Linked Protein Levels “20 Times Higher” In Newborn Babies – What Does This Mean?
  • Americans Were Asked If They Thought Civil War Was Coming. The Results Were Unexpected
  • Voyager 1 & 2 Could Be Detected From Almost A Light-Year Away With Our Current Technology
  • Dams Have Nudged Earth’s Poles By Over 1 Meter In The Past 200 Years
  • This Sugar Could Be A Cure For Male Pattern Baldness – And It’s Been In Our Bodies All Along
  • “Cosmic Immigrants”: Daytime Star Seen In 1604 May Be An “Alien Type Ia Supernova”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version