• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Our Model Of The Universe Is Still Very Broken

March 12, 2024 by Deborah Bloomfield

For the last several years, cosmologists and astronomers have been facing a major tension in our understanding of the cosmos. The expansion rate of the universe continues to be two different numbers depending on how we try and measure it. The cosmic microwave background – first free light in the universe – gives a value. Measurements of galaxies receding from us give another. These were taken by Hubble and one suggestion was a possible error somewhere. Follow-up observations are instead saying no.

Combining observations from Hubble with observations from JWST has strengthened the measurement of the expansion rate (also known as the Hubble constant) in the more local universe. And the value is definitely different from the one from the ancient universe. It seems that the fault is not in our stars but in our models.

Advertisement

“With measurement errors negated, what remains is the real and exciting possibility that we have misunderstood the Universe,” lead author and Nobel Laureate Adam Riess, a physicist at Johns Hopkins University in Baltimore, said in a statement. 

To measure the distance of objects in the universe, there are a few methods. One uses Type Ia supernovae. These explosions have always roughly the same luminosity because they are created when a white dwarf steals enough material to catastrophically collapse and go boom. Since there is a single threshold for that limit, the light produced is always the same.

Knowing how luminous they are and measuring the brightness we get here – so how much they dimmed – we can work out the distance. Another class of objects for which this trick works are Cepheids variables. Astronomer Henrietta Swan Leavitt realized that their pulsation was linked to their intrinsic luminosity so we can work out the distance in a similar manner.

Type Ia supernovae are expected to happen once per century in a galaxy so, while bright, they are not that common. Cepheid variables are more common but one of the concerns with Hubble was that their light might be confused with other stars or affected by dust.

Advertisement

JWST can see through the dust and its keener eye can precisely spot the specific star without confusion. Its observations included five host galaxies of eight Type Ia supernovae containing a total of 1,000 Cepheids – so having two independent methods. The observations stretched out to 130 million light-years from us.

This data shows that errors in the observations of the Cepheids do not contribute to the Hubble tension. The discrepancy is not caused by bad measurements. “We’ve now spanned the whole range of what Hubble observed, and we can rule out a measurement error as the cause of the Hubble Tension with very high confidence,” Riess added.

The Euclid mission, launched last year, and some upcoming observatories might provide better insights into the tension just by the sheer volume of their observations. They may also help us realize how the current understanding of the universe, which has so far shown remarkable predictive ability, needs to be changed to make sense of what we see out there.

A paper discussing the results is published in The Astrophysical Journal Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  2. Netflix acquires its first games studio, “Oxenfree” developer Night School
  3. How Many Earths Can Fit Inside The Sun?
  4. Punk Hairstyles And Pirouettes: Why There’s More To Spiders Than People Think

Source Link: Our Model Of The Universe Is Still Very Broken

Filed Under: News

Primary Sidebar

  • Thieving Pulsar Spinning 592 Times A Second Reveals New Understanding Of Where Its X-Rays Come From
  • The Rise And Fall (And Lamentable Rise) Of The “Alpha Male” Myth
  • IFLScience The Big Questions: How Do Black Holes Shape The Universe?
  • North America’s Smallest Turtle Is The Cutest Thing You’ll Find In A Bog
  • “Unambiguous Signal” To Curb Emissions Now: Long-Lost Aerial Photos Reveal Evolution Of Antarctic Ice Shelf Collapse
  • 8 Children Have Been Born With 3 Biological Parents Each After Mitochondrial Transfer
  • First Known Observations Of Matter-Antimatter Asymmetry In Special Particle Decay
  • In 1973, NASA Sent Two Spiders Into Space To See If They Can Spin Webs – And They Learnt A Lot
  • Meet The Many Species Of Freaky Looking “Assassin Spiders” That Only Eat Other Spiders
  • Your Dog’s TV Preferences Might Reveal Their Personality
  • Some Human Gut Bacteria Can Absorb Harmful Toxic “Forever Chemicals” So They Can Be Pooped Out
  • You Could Float Through 10 Countries Before The World’s Most International River Spat You Out
  • Enormous Coronal Hole And Beast-Like Crawling Prominences Dazzle On The Active Sun
  • Dramatic Drone Footage Of Iceland’s Latest Volcanic Eruption Shows An Epic Scene From Hell
  • A Shrimp That Lives In A Tree? Indonesia’s Cyclops Mountains Are Home To Some Seriously Strange Wildlife
  • Is NASA’s Claim That Saturn Could Float On Water Really True?
  • Pangea Proxima: This Is What Planet Earth May Look Like 250 Million Years In The Future
  • The Story Of Dogxim, The Fox-Dog Hybrid That Shouldn’t Have Existed
  • Neanderthal Butchers From Different Caves Had Their Own Specialities
  • On July 20, The US And Canada Will Witness The Little-Known Seven Sisters Eclipse
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version