• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Physicists Quantum Entangle Two Atomic Clocks For The First Time

September 8, 2022 by Deborah Bloomfield

Physicists have entangled two optical atomic clocks for the first time. This breakthrough could be a way to go beyond even the most cutting-edge current limit of timekeeping as well as being a fantastic tool in an exciting branch of quantum computing: quantum cryptography.

Atomic clocks are used as timekeepers by measuring the resonant frequencies of atoms as their electrons switch between energy levels. Traditionally this has been done using cesium atoms and microwaves but since the year 2000, new atoms have been employed that use visible light. These are optical atomic clocks and use elements such as ytterbium, mercury, and strontium.

Advertisement

Optical atomic clocks have recently been employed to make impressive strides in precision timekeeping. They are 100 times more precise than the traditional cesium atomic clock. So precise, that they may soon be used to redefine the second. But they have their limitations, too. Especially when multiple clocks are needed.

These optical clocks are so precise that they allow for testing small changes of gravity, both to test theories such as relativity as well as to study what’s actually below our feet. However, these approaches require comparisons between different clocks, and the precision of these measurements, for independent devices, will be dependent on the standard quantum limit. Syncing two atomic clocks is difficult because even just measuring them can alter them and introduce errors. But there’s a way to take fewer measurements, and that’s where the quantum “magic” happens. 

Entangling the atoms in two clocks makes it possible to reach the ultimate precision allowed by quantum theory, the Heisenberg limit. In the study, published in Nature, researchers report the ability to have done just that in a system made of two clocks made of a single strontium atom each and 2 meters apart. They reduced uncertainty by a factor of 1.4.

Advertisement

Entanglement is a special state where particles we consider distinct behave as part of a single system. A change to one leads to a change to the other instantaneously, no matter the distance. The fact that this could theoretically happen between two particles at each end of the universe gives many scientists an uneasy feeling. Einstein called it “spooky action at a distance”. But it is not a causal relation; the particles are in a single entangled state, so by doing something to one particle (such as observing) you are actually acting on the whole state even if it stretches for billions of light-years.

In the lab, entangled states are far from this vast sturdy system. They are very delicate and susceptible to breaking apart. This new work stresses that this is still a big issue and that this simple network of optical clocks is just a proof of concept. The research not only highlights the limitations of the method but possible solutions as well. Optical atomic clocks have some hurdles yet to overcome before they can deliver on their promises.

[H/T: New Scientist]

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis – Medvedev continues U.S. Open sprint with third-round win
  2. Avalanche raises $230 million from private sale of AVAX tokens
  3. Australia reports 2,355 new COVID-19 cases as vaccination push continues
  4. Eyes of the world will be on Scotland for climate summit, queen says

Source Link: Physicists Quantum Entangle Two Atomic Clocks For The First Time

Filed Under: News

Primary Sidebar

  • Did A Giant Planet Sculpt Fomalhaut’s Stunning Ring Into Its Squashed Shape?
  • The Unfolding New Astronomical Revolution – Gravitational Waves Discovery Turns 10
  • “Truly A Reversal”: Scientists Find Protein That Causes Brain Aging, And Learn How To Stop It
  • Tiny 2.5-Micrometer Particles Of Air Pollutants Can Promote Certain Types Of Dementia
  • Ants Have Taken Over Most Of The World – Except For A Few Places
  • Naked Mole-Rats: Bizarre-Looking Mammals That Defy Our Understanding Of Cancer And Aging
  • Earth 2.0? Hints Of First Atmospheric Detection Around An Earth-Like Planet Orbiting Another Star
  • The World’s Largest Snails Keep Taking Over US Ecosystems – Will They Again?
  • This Metric At Age 7 Could Predict Your Risk Of Cardiovascular Death In Mid-Life
  • Adorable New Species Of Snailfish Filmed 3,268 Meters Below The Sea, And There’s A Video
  • Why Do Giant Pumpkins Get So Big?
  • Tree-Climbing Snails Have Evolved Sneaky Strategies To Dodge Predators In Japan’s Forests
  • Humans Started Butchering Elephants 1.78 Million Years Ago In Tanzania
  • Unexpected Discovery Hints We Might Be Inside A Black Hole
  • Why Are People Talking About This “Square Structure” Captured On Mars?
  • The World Has Five Oceans, Not Four – Discover The Latest One
  • Just 80 Percent Of People Can Perceive This Optical Illusion And No One Knows Why
  • Something Other Than Geological Processes Or Humans Created These Caves
  • Can Black Holes Lead To Other Places In The Universe?
  • The Devastating Communication Problem Facing Light-Speed Travel
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version