• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Previously Unknown Form Of Electrical Activity Inside Cells May Power Key Reactions

May 5, 2023 by Deborah Bloomfield

The connection between electricity and life has been known since Luigi Galvani made frogs’ legs twitch. Cells harnessing electricity to communicate is one of the things that makes complex life possible – cells’ insides, however, were thought to be predominantly electricity-free zones. New research challenges that, and suggests electrical activity may be the basis for many of the chemical reactions on which we depend.

The membranes that surround cells facilitate electrical interactions by allowing an imbalance of charge to build up between the inside and outside of the cell. It was thought that without membranes such charge differentials were impossible, preventing electrical activity inside the cell (with the exception of organelles like the mitochondria, which have membranes of their own).

Advertisement

New research proves this is not the case; cells can maintain internal electric fields. Just how important these fields are to biological chemistry may take a long time to explore, but the paper’s authors think their work may change the way we look at chemical reactions within cells.

If the inside of a cell was an undifferentiated liquid, its conductivity would prevent charge imbalances from surviving. However, in addition to membrane-bound organelles like the nucleus, cells contain structures known as biological condensates, with densities greater than the material around them. Just as drops of oil don’t need a membrane to survive in water, these condensates can be stable within the cell and maintain different pH levels.

Previous work has shown microdroplets of water create electrical imbalances in their interactions with other matter, both solid and gas. Inspired to extend this work to within the cell, first author Dr Yifan Dai of Duke University added a dye that glows in the presence of reactive oxygen species (ROS) to synthetic imitation cells. The term species here refers to types of molecules, not living things, but that doesn’t mean they have no biological significance. As their name suggests, ROS react easily with many other atoms and molecules, facilitating the formation of many molecules that would not exist otherwise.

The team was able to observe light coming from around the edges of condensates formed from higher salt concentrations, indicating the presence of hydrogen peroxide, a ROS whose formation they attribute to electric fields. 

Advertisement

“Most previous work on biomolecular condensates has focused on their innards,” said Professor Ashutosh Chilkoti, in whose lab the work was done, in a statement. “Yifan’s discovery that biomolecular condensates appear to be redox-active suggests that condensates did not simply evolve to carry out specific biological functions as is commonly understood, but that they are also endowed with a critical chemical function that is essential to cells.”

In addition to providing important insight into the way every cell in our body works today, the finding could be very relevant to explaining how life began. “In a prebiotic environment without enzymes to catalyze reactions, where would the energy come from?” Dai asked. Lightning has been the most commonly provided answer, sometimes followed by volcanoes or meteorite strikes. 

However, the paper points out: “We note that the mechanism by which the condensate interface is redox active is similar to how mitochondria generate ROS.” Perhaps long before cells incorporated mitochondria to make the energy stores on which they run, condensates did the same job, albeit probably not as well.

“This discovery provides a plausible explanation of where the reaction energy could have come from,” Dai said. 

Advertisement

There could be a downside to the condensates, however. “Condensate formation has been shown to promote the formation of amyloid fibrils“, the paper notes.  These are considered; “A potential pathological pathway in neurodegenerative disorders.”

The paper is published in the journal Chem.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Texas city to offer Samsung large property tax breaks to build $17 billion chip plant
  2. U.S. sanctions several Hong Kong-based Chinese entities over Iran -website
  3. Asian stocks fall to near 1-year low as oil prices stoke inflation worries
  4. “Unique” Medieval Christian Art Discovered By Accident In Sudan Desert

Source Link: Previously Unknown Form Of Electrical Activity Inside Cells May Power Key Reactions

Filed Under: News

Primary Sidebar

  • This Antarctic Glacier Just Broke An Unwanted Record – Fastest Retreat In Modern History
  • New Portuguese Man O’ War Species Discovered After Warming Ocean Currents Push It North
  • Watch Orcas Use “Tonic Immobility” To Suck An Enormous Liver Out Of The World’s Deadliest Shark
  • Ancient Micronesians Hunted Sharks 1,800 Years Ago, And Now We Know Which Species
  • World’s First Plasma “Fireballs” Help Explain Supermassive Black Hole Mystery
  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Strange Patterns In Ancient Rocks Reveal Earth’s Tumbling Magnetic Field, Not Speeding Continents
  • Interstellar Comet 3I/ATLAS Can Now Be Seen From Earth – Even By Amateur Telescopes!
  • For 25 Years, People Have Been Living Continuously In Space – But What Happens Next?
  • People Are Not Happy After Learning How Horses Sweat
  • World’s First Generational Tobacco Ban Takes Effect For People Born After 2007
  • Why Was The Year 536 CE A Truly Terrible Time To Be Alive?
  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version