• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Quantum Teleportation And Entanglement Leads To Nobel Prize Victory

October 4, 2022 by Deborah Bloomfield

Quantum mechanics is weird. And don’t take our word for it. Einstein was less than pleased with it. In particular, with the concept of entanglement, which the famous physicist called “spooky action at a distance”. He believed this spookiness could be explained away but the work of the three latest Nobel laureates and many others have demonstrated that Einstein’s belief was wrong. Absolutely at odds with reality.

Einstein wanted to explain the universe deterministically. That means that once you know the laws of physics you should be able to understand, model, and even predict everything that happens in the universe. But quantum mechanics really doesn’t work that way. It is probabilistic. And reality has all sorts of behaviors that do not fit with the deterministic view.

Advertisement

The “fix” to make quantum mechanics not probabilistic was proposing the existence of hidden variables – properties that would affect measurements but couldn’t be measured. There are different ways to test the existence of these hidden variables and they take the name of Bell’s theorem after the first one proposed in 1964 by physicist John Stewart Bell.

The winners of the 2022 Nobel Prize in Physics – Alain Aspect, John Clauser, and Anton Zeilinger – and their many collaborators worked on experiments that tested the inequalities stated in the theorem as well as being pioneers in the field of quantum information. The field has been foundational for concepts such as quantum cryptography and quantum teleportation, plus the theory at the core of how quantum computers are going to work in the future.

Their work utilizes entangled photons, where pairs of light particles are placed in a single state. So far it doesn’t seem too spooky but the weirdness is in the details. In quantum mechanics, taking a measurement “freezes” the property measured in a specific state; the wavefunction which describes the probabilistic behavior is said to collapse. With entangled pairs of photons, taking measurements of one will also collapse the other, instantaneously, no matter how far away the two particles are.

Advertisement

At first, this might look like faster-than-light communication, which is a big no-no in physics. But work done by thousands of physicists has shown that this is not the case at all. Quantum mechanics simply works differently.

Quantum information was also celebrated by the Breakthrough Prizes a couple of weeks ago. Clearly, it is the hot topic of the moment. 

The new Nobel laureates will receive a monetary prize of 10 million Swedish kronor (about $896,000) which will be shared among the winners. 

Advertisement

During the press conference, Zeilinger highlighted that while the Nobel goes exclusively to individuals, he would not have received it without the help of more than 100 young collaborators who worked with him. 

Since 1901, there have been 221 Nobel laureates in Physics. Four of them have been women.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. China Evergrande to delay loan interest payments to banks, REDD reports
  2. China says U.S. and allies have duty to aid Afghanistan
  3. A life and death question for regulators: Is Tesla’s Autopilot safe?
  4. Geely’s Volvo Cars aims to raise $2.9 billion in IPO

Source Link: Quantum Teleportation And Entanglement Leads To Nobel Prize Victory

Filed Under: News

Primary Sidebar

  • DNA From Greenland Sled Dogs – Maybe The World’s Oldest Breed – Reveals 1,000 Years Of Arctic History
  • Why Doesn’t Moonrise Shift By The Same Amount Each Night?
  • Moa De-Extinction, Fashionable Chimps, And Robot Surgery – No Human Required
  • “Human”: Powerful New Images Mark The Most Scientifically Accurate “Hyper-Real 3D Models Of Human Species Ever”
  • Did We Accidentally Leave Life On The Moon In 2019 – And Could We Revive It?
  • 1.8 Million Years Ago, Two Extinct Humans Had One Of The Gnarliest Deaths In History
  • “Powerful Image” Of One Of The World’s Rarest Tigers Exposes The Real Danger In Taman Negara
  • Evolution, Domestication, And A Lot Of Very Good Boys: How Wolves Became Dogs
  • Why Do Orcas Have White Spots Near Their Eyes?
  • Tomb Of First King Of Ancient Maya City Discovered In Belize
  • The Real Reason The Tip Of Your Tape Measure Wiggles Like That
  • The “Haunting” Last Message From NASA’s Opportunity Rover, Sent From Inside A Planet-Wide Storm
  • Adorable Video Proves Not All Gorillas Hate The Rain. It Might Even Win One A Mate
  • 5,000-Year-Old Rock Art May Show One Of Ancient Egypt’s First Rulers
  • Alzheimer’s-Linked Protein Levels “20 Times Higher” In Newborn Babies – What Does This Mean?
  • Americans Were Asked If They Thought Civil War Was Coming. The Results Were Unexpected
  • Voyager 1 & 2 Could Be Detected From Almost A Light-Year Away With Our Current Technology
  • Dams Have Nudged Earth’s Poles By Over 1 Meter In The Past 200 Years
  • This Sugar Could Be A Cure For Male Pattern Baldness – And It’s Been In Our Bodies All Along
  • “Cosmic Immigrants”: Daytime Star Seen In 1604 May Be An “Alien Type Ia Supernova”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version