• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

“Rarest Event Ever” Had A Half-Life 1 Trillion Times Longer Than The Age Of The Universe – How Did We See It?

July 4, 2025 by Deborah Bloomfield

In 2019, researchers with the XENON Collaboration saw something unexpected. The device is designed to find evidence of the elusive dark matter, a hypothetical substance that is believed (with good reason) to exist everywhere. Instead, it saw something weird happening to the xenon in the device. One of the atoms decayed. This was a surprise as the half-life for that particular xenon was a half-life of 18 billion trillion years. That’s more than 1 trillion times longer than the current age of the universe.

This has been described as the rarest event ever recorded, and it is not hyperbole. Still, it is important to understand the meaning and context of a half-life of 18 billion trillion years, and how in the end we can see such an event, even if they are extremely rare. The term “half-life” refers to the amount of time it takes for half of a given quantity of a specific atom to decay into another form.

When we think of radioactive decay, we tend to think of things happening very fast. There’s a good reason for that. With the advent of the nuclear age, discussions of half-life have all been about unstable elements that disappear in seconds and can trigger explosive chain reactions. In medicine, we use radioactive elements that might decay in hours or days, but their half-lives might be a lot longer than that.

Take Uranium, for example. Its most common form has a half-life of almost 4.5 billion years. So when the Earth formed, it had twice as much Uranium. Still, you wouldn’t want to be near Uranium for long, because the atoms do decay constantly, albeit slowly. Uranium is not super dangerous naturally, but it is in our uses that can pose a more serious health risk.

Still, the half-life of xenon-124 is about 4 trillion times longer than that of uranium-238. How did we even measure that? The detector has 2 metric tons of xenon in it, which is almost 10,000 trillion trillion atoms. So if you put enough of these atoms together, you should see a single atom decaying every few minutes.

Should is the operative word here. Because looking at atoms is not like looking at a handful of red marbles waiting for one to turn blue. It is like looking at an overwhelming number of marbles, where one might get slightly more massive and create a flash of x-rays or throw away an electron. In 177 days of data collection, the team saw around 9 events.

A problem with a lot of these rare events with an enormous half-life is actually catching them in the act. And without seeing the event, we do not even know if it happens. 

Take the proton, for example, the tiny, positively charged particle at the heart of every atom. Some theories in physics predict that protons might eventually decay. But so far, in all of our experiments, we’ve never seen it happen. That means if proton decay does occur, it must take an incredibly long time, so long, in fact, that scientists estimate its half-life to be at least 1.67 billion trillion trillion years. 100 billion times longer than Xenon-124.

It is not easy looking for events that make the lifetime of stars look like seconds.  

The observations were reported in detail in the journal Nature.

An earlier version of this story was published in 2019.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Biden nominee for key China export post expects Huawei to remain blacklisted
  2. New Images From Inside Fukushima Nuclear Plant Are Causing Big Worries
  3. 100-Year Floods May Be Looming If We Don’t Change Our Ways
  4. Disk Called “Dracula’s Chivito” Has The Largest Collection Of Planet-Making Materials Ever Found

Source Link: "Rarest Event Ever" Had A Half-Life 1 Trillion Times Longer Than The Age Of The Universe - How Did We See It?

Filed Under: News

Primary Sidebar

  • Earth’s Most Show-Stopping Electrical Storm Sees 280 Lightning Bolts An Hour
  • “Hot Rock” Under Appalachians Traveled From Greenland To US At 20 Kilometers Per Million Years – And Is Still Moving
  • Scientists Succeed In Capturing Elusive “Ghost Particles” Escaping Nuclear Reactor
  • Just How Many “Sixth Senses” Do We Have, Anyway?
  • No Life But Lots Of Water – Latest Observations From Controversial Planet K2-18b
  • Is The Shroud Of Turin Real Or Fake?
  • Memories Of Places “Drift” In The Brain – Even When The Environment Doesn’t Change
  • People Are Just Realizing That One Horse Is More Powerful Than One Horsepower
  • For 100 Years, A Stable 20-Electron Ferrocene Molecule Was Thought “Improbable” – Until Now
  • “I Saved A PNG Image To A Bird”: YouTuber Stores 176KB Drawing Of A Bird Inside A Bird’s Song
  • The Falkland Islands Wolf: The Tragic Tale Of The First Known Canid Humans Drove To Extinction
  • There’s A Forever Chemical That’s In Your Water, Food, And Blood — And Levels Are “Increasing Irreversibly”
  • “World’s Rarest Bear” Captured On Camera In Mongolian Desert – With A Baby!
  • Alligators Eat Rocks For An Incredibly Smart Reason
  • New Study Raises “Disturbing Prospect” About Alien Civilizations Using Dyson Swarms
  • The Khamar-Daban Incident Is So Strange It Is Known As “Buryatia’s Dyatlov Pass”
  • Zebroids, Zeedonks, Zorses, Zonies: Welcome To The World Of Zebra Hybrids
  • How Far Into The Universe Can You See With Your Naked Eye?
  • “Rarest Baryon Decay Ever Observed So Far” Found In Experiment That Wasn’t Even Looking For It
  • Scientists “Read Minds” By Opening The Brain’s “Filing Cabinet” Of Memories
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version