• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Scientists Succeed In Capturing Elusive “Ghost Particles” Escaping Nuclear Reactor

July 30, 2025 by Deborah Bloomfield

Neutrinos are fundamental particles with a tiny mass and no electric charge. This allows them to move undisturbed through solid objects, such as the whole planet. Every second, 60 billion neutrinos from the Sun go through every square centimeter of us. To capture these so-called “ghost particles”, researchers need enormous detectors. A new method for a specific class of neutrinos was able to go in a completely different direction.

Neutrinos produced in space usually have a lot of energy. To study them and their sources, researchers need to capture the rare instance of one of them hitting an atom and producing a flash of light. This is usually done with building-sized tanks of ultra-pure water or by using glaciers. 

A few years ago, researchers demonstrated that neutrinos that are not as energetic can behave slightly differently with matter. This is known as the Coherent Elastic Neutrino-Nucleus Scattering (CEvNS). Basically, the neutrino interacts with the whole nucleus of an atom, causing a minute change in the motion of the nucleus. The team compared it to a ping pong ball changing the speed of a car by bouncing off it. Sure, the effect would be tiny, but as long as you can measure it, you have your detection.

This was the goal of the CONUS+ experiment, with a detector mass of just 3 kilograms, which is wildly different from the cubic kilometer IceCube in Antarctica or HyperKamiokande in Japan. The team needed a lot of neutrinos and for them to be at low energy. A great source was the Leibstadt nuclear power plant (KKL) in Switzerland.

CONUS+ was placed 20.7 meters from the reactor core, receiving 10 trillion neutrinos every centimeter of the detector every second. These were actually antineutrinos, the antimatter equivalent of the neutrino. The team collected data for 119 days between Autumn 2023 and summer 2024 and found 395±106 neutrino signals. This is consistent with the theoretical calculations.

“We have thus successfully confirmed the sensitivity of the CONUS+ experiment and its ability to detect antineutrino scattering from atomic nuclei,” co-author Dr Christian Buck from the Max Planck Institute for Nuclear Physics said in a statement.

Neutrinos and antineutrinos and their properties are explained by the standard model of particle physics, the cornerstone theory of the foundation of reality. Yet, we know it is limited to searches looking to find what predictions do not match reality. This detector might give new insights into the nature of neutrinos.



“The techniques and methods used in CONUS+ have excellent potential for fundamental new discoveries,” emphasizes Professor Manfred Lindner, initiator of the project and also an author of the study. “The groundbreaking CONUS+ results could therefore mark the starting point for a new field in neutrino research.”

A paper describing the findings is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  2. Dinosaur Prints Found Under Restaurant Table Confirmed As 100 Million Years Old
  3. Archax: Japanese Engineers Make Transformer Robot That Actually Works
  4. How Do We Know There Is Anything Beyond The Observable Universe?

Source Link: Scientists Succeed In Capturing Elusive "Ghost Particles" Escaping Nuclear Reactor

Filed Under: News

Primary Sidebar

  • US Just Killed NASA’s Mars Sample Return Mission – So What Happens Now?
  • Art Sleuths May Have Recovered Traces Of Da Vinci’s DNA From One Of His Drawings
  • Countries With The Most Narcissists Identified By 45,000-Person Study, And The Results Might Surprise You
  • World’s Oldest Poison Arrows Were Used By Hunters 60,000 Years Ago
  • The Real Reason You Shouldn’t Eat (Most) Raw Cookie Dough
  • Antarctic Scientists Have Just Moved The South Pole – Literally
  • “What We Have Is A Very Good Candidate”: Has The Ancestor Of Homo Sapiens Finally Been Found In Africa?
  • Europe’s Missing Ceratopsian Dinosaurs Have Been Found And They’re Quite Diverse
  • Why Don’t Snorers Wake Themselves Up?
  • Endangered “Northern Native Cat” Captured On Camera For The First Time In 80 Years At Australian Sanctuary
  • Watch 25 Years Of A Supernova Expanding Into Space Squeezed Into This 40-Second NASA Video
  • “Diet Stacking” Trend Could Be Seriously Bad For Your Health
  • Meet The Psychedelic Earth Tiger, A Funky Addition To “10 Species To Watch” In 2026
  • The Weird Mystery Of The “Einstein Desert” In The Hunt For Rogue Planets
  • NASA Astronaut Charles Duke Left A Touching Photograph And Message On The Moon In 1972
  • How Multilingual Are You? This New Language Calculator Lets You Find Out In A Minute
  • Europa’s Seabed Might Be Too Quiet For Life: “The Energy Just Doesn’t Seem To Be There”
  • Amoebae: The Microscopic Health Threat Lurking In Our Water Supplies. Are We Taking Them Seriously?
  • The Last Dogs In Antarctica Were Kicked Out In April 1994 By An International Treaty
  • Interstellar Comet 3I/ATLAS Snapped By NASA’s Europa Mission: “We’re Still Scratching Our Heads About Some Of The Things We’re Seeing”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version