• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Scientists Take Smallest Measurement Of Gravity Ever In Quantum Quest

February 26, 2024 by Deborah Bloomfield

Scientists have broken the record for the smallest measurements of gravity using a technique they see as having the potential to go much smaller. So small in fact it may help us determine if gravity is quantized, and if so, how general relativity and quantum mechanics are reconciled.

One of the great revelations of the early 20th century is that energy is not continuous, instead existing in minuscule packages, known as quanta. This discovery, stunning on its own, led to numerous follow-ups that demonstrated other things were quantized as well. There remains uncertainty, however, about how far this extends: do time and gravity, for example, also exist in packets so small we have not been able to find them?

Advertisement

The existence of quantized gravity is widely held to be the key to resolving the apparent incompatibility between quantum mechanics and general relativity, our best theory to represent gravity. However, decades of searches have failed to find evidence for this quantization or to explain theoretically how it would work to a standard generally considered acceptable. New experiments take us closer to that goal.

Previously at Leiden University and now at the University of Southampton, Dr Tim Fuchs led a team that used a levitating magnet to measure the effects of gravity on a particle weighing 0.43 milligrams (0.000015 ounces) when cooled to -273.14°C, a tenth of a degree above absolute zero.

The supercold conditions minimize the particle’s vibration, allowing the team to measure a gravitational pull of just 30 attonewtons (3*10-17 N, or to spell it out for impact 0.00000000000000003 N) on it. That is still larger than the likely size of gravity quanta, if they exist. However, Fuchs argues the same technique can go smaller still until it finds out if gravity can have any force, or is restricted to discrete jumps. The approach is analogous to the one used by Robert Millikan to first measure the charge on the electron, showing the total charge on an oil droplet is always a multiple of a specific number.

The ”particle” used, while small, is within our realm of experience – it’s the right order for a grain of sand or sugar. The force is a great deal smaller, produced not by the pull of the whole Earth but by blocks weighing just 1 kilogram (2.2 pounds). A wheel tuned the weights so that their influence on the particle could be measured at different distances.

Advertisement

“For a century, scientists have tried and failed to understand how gravity and quantum mechanics work together,” Fuchs said in a statement. “Now we have successfully measured gravitational signals at a smallest mass ever recorded, it means we are one step closer to finally realizing how it works in tandem.”

“From here we will start scaling the source down using this technique until we reach the quantum world on both sides,” Fuchs continued. “By understanding quantum gravity we could solve some of the mysteries of our universe – like how it began, what happens inside black holes, and uniting all forces into one big theory.”

For this to occur, quantum gravity has to be real, which some physicists doubt. If Fuchs’ work finds no sign of quantization at ever smaller forces, those voices will grow louder.

Although the idea seems simple, gravity is very hard to measure at microscopic scales because it is so weak. It might not feel like that to us, crushed under the weight of a planet that will not release us. In the world of the very small, however, gravity is completely overwhelmed by the strength of the other three forces, and experiments need to find ways to allow for that.

Advertisement

The team needed advanced superconducting traps, precise magnetic fields, and sensitive detectors shielded from vibrations, to do the work. “We’re pushing the boundaries of science,” said co-author Professor Hendrik Ulbricht. “Unravelling these mysteries will help us unlock more secrets about the universe’s very fabric, from the tiniest particles to the grandest cosmic structures.”

The study is open access in Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  2. A Mary Anning Biography That Was Written In Her Lifetime Is Finally Published
  3. Skinwalker Ranch – Bastion For The Paranormal Or Hoax?
  4. What Is The White Smoke Coming Out Of A Car Exhaust?

Source Link: Scientists Take Smallest Measurement Of Gravity Ever In Quantum Quest

Filed Under: News

Primary Sidebar

  • Meet The Kodkod Of The Americas: Shy, Secretive, And Super-Small
  • Incredible Footage May Be First Evidence Wild Wolves Have Figured Out How To Use Tools
  • Raccoons In US Cities Are Evolving To Become More Pet-Like
  • How Does CERN’s Antimatter Factory Work? We Visited To Find Out
  • Elusive Gingko-Toothed Beaked Whale Seen Alive For First Time Ever
  • Candidate Gravitational Wave Detection Hints At First-Of-Its-Kind Incredibly Small Object
  • People Are Just Learning What A Baby Eel Is Called
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations
  • Traces Of Photosynthetic Lifeforms 1 Billion Years Older Than Previous Record-Holder Discovered
  • This 12,000-Year-Old Artwork Shows An “Extraordinary” Moment In History And Human Creativity
  • World’s First Critically Endangered Penguin Directly Competes With Fishing Boats For Food
  • Parasitic Ant Queens Use Chemical Warfare To Incite Revolutions Against Reigning Queens
  • Data From Mars Lets ESA Predict 3I/ATLAS’s Path 10 Times More Precisely
  • A Massive Gold Deposit Worth $192 Billion Has Been Discovered As Prices Stay Sky High For 2025
  • See It For Yourself: Your Chance To See Interstellar Comet 3I/ATLAS Livestreamed This Week
  • A Woman Born Missing Most Of Her Brain Just Celebrated Her 20th Birthday. What Does That Mean?
  • When And Where Interstellar Objects Like 3I/ATLAS Are Most Likely To Hit Earth
  • Person In The US Infected With A Form Of Bird Flu Never Seen In Humans Before
  • Carl Sagan Left A Heartfelt Message For The First People To Set Foot On Mars
  • People Are Just Learning About A Key Feature Of The Statue Of Liberty That Everyone Forgets
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version