• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Scientists Uncover New Kind Of Synapse Between The “Tiny Hairs” On Brain Cells

September 2, 2022 by Deborah Bloomfield

Scientists from the Janelia Campus at Howard Hughes Medical Institute have made a surprising discovery, and it might help explain how brain cells communicate long-term changes to each other. Their findings, reported in the journal Cell, describe a new synapse between axons and primary cilia – hair-like structures present on different cell types including neurons. 

Synapses normally span between the axon of one neuron and the dendrite of another, however, the new findings suggest that axons could take an alternative, shorter route and connect to special junctions of primary cilia to rapidly signal information to the cell’s nucleus, forming a new kind of synapse not seen before. 

Advertisement

“This special synapse represents a way to change what is being transcribed or made in the nucleus, and that changes whole programs,” Janelia Senior Group Leader David Clapham, whose team led the new research, said in a statement. 

The researchers used high-resolution microscopy, biosensors, and biochemical tools to peer deep into the cellular structures present in neuronal cells, observe the new synapse, and understand the downstream influence of the new signaling pathway. Specifically, they focused on axons that release the neurotransmitter serotonin. 

New neuronal synapse with cilia
The graphic shows how an axon from a serotonergic neuron in blue contacts a primary cilium in yellow. Image Credit: Sheu et al/Cell, CC BY 4.0

The researchers were able to show, step by step, how a neuronal cell’s axon releases serotonin onto the primary cilia of another neuronal cell, forming a new synapse. They were also able to gain a better understanding of the biochemical changes that occur downstream of this specific signaling mechanism. 

Advertisement

Because primary cilia structures span from the interior of cells, close to the nucleus, all the way to the exterior of the cell’s surface, signals passed across the ciliary synapse can enable changes to genomic material in the nucleus of these cells. The researchers, therefore, suggest that this signaling mechanism is more likely to transmit long-term changes anywhere in the cells in a faster, more selective manner. 

The effects in the cell are not just short-term, Clapham explained – some can be long-term. “It is like a new dock on a cell that gives express access to chromatin changes, and that is very important because chromatin changes so many aspects of the cell.”

The signaling of the new synapse specifically targets chromatin – the mixture of DNA and proteins that forms chromosomes – inside the nucleus of cells. The researchers say the changes induced could therefore last anywhere from hours up to years, as they impact the genetic information of the cells. This does, however, open up the possibility that the new synapse could inform the creation of more targeted medication in the future, which is an exciting prospect. 

Advertisement

“Everything we learn about biology may be useful for people to lead better lives, if you can figure out how biology works, you can fix things,” Clapham concluded.  

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Barty storms into third round as U.S. Open mops up
  2. Timeline: North Korea’s tests and summits over recent years
  3. PAHO says in advanced talks to buy more COVID vaccines
  4. “Diamond Factory” May Have Existed At Boundary of Earth’s Core

Source Link: Scientists Uncover New Kind Of Synapse Between The “Tiny Hairs” On Brain Cells

Filed Under: News

Primary Sidebar

  • “Wholly Unexpected”: First-Ever Fossil Paranthropus Hand Raises Questions About Earliest Tool Makers’ Identity
  • For Centuries, Nobody Knew Why Swiss Cheese Has Holes. Then, The Mystery Was Solved.
  • Scientists Studied The Infamous “Chicago Rat Hole” And They Have Some Bad News
  • Massive 166-Million-Year-Old Sauropod Footprints Become The Longest Dinosaur Trackway In Europe
  • Do Spiders Dream? “After Watching Hundreds Of Spiders, There Is No Doubt In My Mind”
  • IFLScience Meets: ESA Astronaut Rosemary Coogan On Astronaut Training And The Future Of Space Exploration
  • What’s So Weird About The Methuselah Star, The Oldest We’ve Found In The Universe?
  • Why Does Red Wine Give Me A Headache? Many Scientists Blame It On The Grape Skins
  • Manta Rays Dive Way Deeper Than We Thought – Up To 1.2 Kilometers – To Explore The Seas
  • Prof Brian Cox Explains What He Finds “Remarkable” About Interstellar Object 3I/ATLAS Story
  • Pioneering “Pregnancy Test” Could Identify Hormones In Skeletons Over 1,000 Years Old
  • The First Neolithic Self-Portrait? Stony Human Face Emerges In 12,000-Year-Old Ruins At Karahan Tepe
  • Women Are Diagnosed With ADHD 5 Years Later Than Men, Even With Worse Symptoms
  • What Is Cryptozoology? We Explore The History And Mystery Of This Controversial Field
  • The Universe’s “Red Sky Paradox” Just Got Darker: Most Stars Might Never Host Observers
  • Uranus And Neptune May Not Be “Ice Giants” But The Solar System’s First “Rocky Giants”
  • COVID-19 Can Alter Sperm And Affect Brain Development In Offspring, Causing Anxious Behavior
  • Why Do Spiders’ Legs Curl Up Like That When They’re Dead?
  • “Dead Men’s Fingers” Might Just Be The Strangest Fruit On The Planet
  • The South Atlantic’s Giant Weak Spot In The Earth’s Magnetic Field Is Growing
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version