• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Scientists Uncover New Kind Of Synapse Between The “Tiny Hairs” On Brain Cells

September 2, 2022 by Deborah Bloomfield

Scientists from the Janelia Campus at Howard Hughes Medical Institute have made a surprising discovery, and it might help explain how brain cells communicate long-term changes to each other. Their findings, reported in the journal Cell, describe a new synapse between axons and primary cilia – hair-like structures present on different cell types including neurons. 

Synapses normally span between the axon of one neuron and the dendrite of another, however, the new findings suggest that axons could take an alternative, shorter route and connect to special junctions of primary cilia to rapidly signal information to the cell’s nucleus, forming a new kind of synapse not seen before. 

Advertisement

“This special synapse represents a way to change what is being transcribed or made in the nucleus, and that changes whole programs,” Janelia Senior Group Leader David Clapham, whose team led the new research, said in a statement. 

The researchers used high-resolution microscopy, biosensors, and biochemical tools to peer deep into the cellular structures present in neuronal cells, observe the new synapse, and understand the downstream influence of the new signaling pathway. Specifically, they focused on axons that release the neurotransmitter serotonin. 

New neuronal synapse with cilia
The graphic shows how an axon from a serotonergic neuron in blue contacts a primary cilium in yellow. Image Credit: Sheu et al/Cell, CC BY 4.0

The researchers were able to show, step by step, how a neuronal cell’s axon releases serotonin onto the primary cilia of another neuronal cell, forming a new synapse. They were also able to gain a better understanding of the biochemical changes that occur downstream of this specific signaling mechanism. 

Advertisement

Because primary cilia structures span from the interior of cells, close to the nucleus, all the way to the exterior of the cell’s surface, signals passed across the ciliary synapse can enable changes to genomic material in the nucleus of these cells. The researchers, therefore, suggest that this signaling mechanism is more likely to transmit long-term changes anywhere in the cells in a faster, more selective manner. 

The effects in the cell are not just short-term, Clapham explained – some can be long-term. “It is like a new dock on a cell that gives express access to chromatin changes, and that is very important because chromatin changes so many aspects of the cell.”

The signaling of the new synapse specifically targets chromatin – the mixture of DNA and proteins that forms chromosomes – inside the nucleus of cells. The researchers say the changes induced could therefore last anywhere from hours up to years, as they impact the genetic information of the cells. This does, however, open up the possibility that the new synapse could inform the creation of more targeted medication in the future, which is an exciting prospect. 

Advertisement

“Everything we learn about biology may be useful for people to lead better lives, if you can figure out how biology works, you can fix things,” Clapham concluded.  

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Barty storms into third round as U.S. Open mops up
  2. Timeline: North Korea’s tests and summits over recent years
  3. PAHO says in advanced talks to buy more COVID vaccines
  4. “Diamond Factory” May Have Existed At Boundary of Earth’s Core

Source Link: Scientists Uncover New Kind Of Synapse Between The “Tiny Hairs” On Brain Cells

Filed Under: News

Primary Sidebar

  • Rare 2-Million-Year-Old Infant Facial Fossils Expand What We Know About Prehistoric Human Children
  • First-Ever 3D Map Of Planet Outside Solar System Reveals Distant World’s Hot Spot And Cool Ring
  • From Chains To Forests: Working Elephants Set To Be Rehabilitated In The Wild Under New Project
  • Why Does Death Have Such A Distinctive Smell?
  • Blue Dogs Have Been Spotted In Chernobyl: What Is Going On?
  • Record-Breaking Gravitational Wave Detection Suggests These Black Holes Merged Before
  • Hurricane Melissa Is 2025’s Strongest Storm Yet, With Turbulence So Bad It Saw Off The Hurricane Hunters
  • Fancy Seeing Your Organs In 4D? Pretty Soon, You Might Be Able To
  • First Known Bats To Glow In The Dark In The US Discovered – But Scientists Aren’t Sure Why
  • “You Be Good. I Love You”: How Alex The Parrot Rewrote Our Understanding Of Animal Intelligence
  • What Would You Find If You Drill Down Deep Under Antarctica?
  • This Is The Safest Place To Sit In Your Car
  • Birds, Hats, And Boycotts: The Story Behind Why It’s A Crime To Collect Feathers
  • Ultra-High-Definition TV – Is It Really Worth It? New Study Figures Out If We Can Even See In UHD
  • Interstellar Comet 3I/ATLAS Will Be At Its Closest To The Sun This Week
  • Human Movement Around Earth Over 40 Times Greater Than That Of All Wild Land Animals Combined
  • Rats Filmed Snatching Bats Out Of The Air Mid-Flight In First-Of-Its-Kind Footage
  • Incredible Planetary System Has Two Stars And Three Earth-Sized Planets
  • “Invasive” Iguanas Spared Extinction As It’s Discovered They Arrived Before Humans Did
  • C/2025 A6 (Lemmon): Phenomenal Fleeting Photobomb Creates Spiral Over Brightest Comet
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version