• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Shaking A Bottle Of Cola Doesn’t Increase Its Pressure. So Why Does It Explode?

September 12, 2024 by Deborah Bloomfield

Everyone is familiar with what happens when you shake up a bottle of soda and then open it up, or else hand it to an unsuspecting friend and let them open it up.

Advertisement

If you don’t, well it will explode everywhere. But the reason that happens may not be what you have been told. 

The oft-repeated reason for why this happens is that shaking the bottle causes an increase in pressure, but this explanation doesn’t really make any sense. The bottle is a closed system, and the only way to increase its pressure is to squeeze it into a smaller shape, or else add more pressure by opening the bottle and forcing more fluid or air inside.

Don’t believe us? Try squeezing a bottle of cola, shaking it, and then squeezing it again. It should be just as squeezable as it was before, rather than suddenly pressurized and harder to press. Measuring the pressure would also do the trick.



So what’s really going on? 

Advertisement

Bottles of soda are pressurized above atmospheric pressure, and the “fizz” comes from carbon dioxide dissolved into the liquid. 

“Carbonation involves dissolving the colorless and odorless carbon dioxide – CO₂ – gas into a liquid. When carbon dioxide is added to a sealed bottle or can containing water, the pressure in the bottle or can increases, and the carbon dioxide dissolves into the liquid,” Michael W. Crowder, Professor of Chemistry and Biochemistry at Miami University, explains in a piece for The Conversation.

“The CO₂ above the liquid and the CO₂ dissolved in the liquid reach chemical equilibrium. Chemical equilibrium essentially means the rate that CO₂ dissolves into the liquid is equal to the rate that CO₂ is released from the liquid. It’s based on the amounts of CO₂ both in the air and in the liquid.”

Opening up the bottle causes the pressure in the air above the liquid to drop to match the surrounding environment. At this point, carbonic acid (H₂CO₃) converts back to CO₂, and the gas bubbles at the surface. 

Advertisement



How quickly the CO₂ escapes depends upon the surface area of the liquid. E.g. if you pour it directly into the bottom of a glass, that increases the surface area dramatically compared to pouring it slowly down the sides, and the result is that the carefully poured glass will retain fizz for longer.

When you shake a bottle of soda, what you are really doing is making the gas within the bottle above the soda mix into the liquid. Since the liquid is already at maximum saturation, CO₂ can no longer dissolve into it, and instead it forms bubbles throughout the bottle. These bubbles introduce more surface area.

“Without shaking, the only exposed surface is at the neck of the bottle. But if you shake, bubbles become dispersed through the liquid and the surface area becomes very large, as each bubble now represents a liquid-gas interface,” Joe Schwarcz of the McGill Office for Science and Society explains in a blog post. “The dissolved carbon dioxide quickly evaporates into each bubble, causing the bubbles to expand, thereby propelling the liquid out of the bottle as a foam.”

Advertisement

All “explainer” articles are confirmed by fact checkers to be correct at time of publishing. Text, images, and links may be edited, removed, or added to at a later date to keep information current.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Hong Kong security chief steps up pressure on city’s main press group
  2. One Identity has acquired OneLogin, a rival to Okta and Ping in sign-on and identity access management
  3. “Starquakes” On Neutron Stars Could Be Source Of Mysterious Fast Radio Bursts
  4. The Smallest Mammal In The World Lived 53 Million Years Ago

Source Link: Shaking A Bottle Of Cola Doesn't Increase Its Pressure. So Why Does It Explode?

Filed Under: News

Primary Sidebar

  • Unethical Experiments: When Scientists Really Should Have Stopped What They Were Doing Immediately
  • The First Humans Were Hunted By Leopards And Weren’t The Apex Predators We Thought They Were
  • Earth’s Passage Through The Galaxy Might Be Written In Its Rocks
  • What Is An Einstein Cross – And Why Is The Latest One Such A Unique Find?
  • If We Found Life On Mars, What Would That Mean For The Fermi Paradox And The Great Filter?
  • The Longest Living Mammals Are Giants That Live Up To 200 Years In The Icy Arctic
  • Entirely New Virus Detected In Bat Urine, And It’s Only The 4th Of Its Kind Ever Isolated
  • The First Ever Full Asteroid History: From Its Doomed Discovery To Collecting Its Meteorites
  • World’s Oldest Pachycephalosaur Fossil Pushes Back These Dinosaurs’ Emergence By 15 Million Years
  • The Hole In The Ozone Layer Is Healing And On Track For Full Recovery In The 21st Century, Thanks To Science
  • First Sweet Potato Genome Reveals They’re Hybrids With A Puzzling Past And 6 Sets Of Chromosomes
  • Why Is The Top Of Canada So Sparsely Populated? Meet The “Canadian Shield”
  • Humans Are In The Middle Of “A Great Evolutionary Transition”, New Paper Claims
  • Why Do Some Toilets Have Two Flush Buttons?
  • 130-Year-Old Butter Additive Discovered In Danish Basement Contains Bacteria From The 1890s
  • Prehistoric Humans Made Necklaces From Marine Mollusk Fossils 20,000 Years Ago
  • Zond 5: In 1968 Two Soviet Steppe Tortoises Beat Humans To Orbiting Around The Moon
  • Why Cats Adapted This Defense Mechanism From Snakes
  • Mother Orca Seen Carrying Dead Calf Once Again On Washington Coast
  • A Busy Spider Season Is Brewing: Why This Fall Could See A Boom Of Arachnid Activity
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version