• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Shaking A Bottle Of Cola Doesn’t Increase Its Pressure. So Why Does It Explode?

September 12, 2024 by Deborah Bloomfield

Everyone is familiar with what happens when you shake up a bottle of soda and then open it up, or else hand it to an unsuspecting friend and let them open it up.

Advertisement

If you don’t, well it will explode everywhere. But the reason that happens may not be what you have been told. 

The oft-repeated reason for why this happens is that shaking the bottle causes an increase in pressure, but this explanation doesn’t really make any sense. The bottle is a closed system, and the only way to increase its pressure is to squeeze it into a smaller shape, or else add more pressure by opening the bottle and forcing more fluid or air inside.

Don’t believe us? Try squeezing a bottle of cola, shaking it, and then squeezing it again. It should be just as squeezable as it was before, rather than suddenly pressurized and harder to press. Measuring the pressure would also do the trick.



So what’s really going on? 

Advertisement

Bottles of soda are pressurized above atmospheric pressure, and the “fizz” comes from carbon dioxide dissolved into the liquid. 

“Carbonation involves dissolving the colorless and odorless carbon dioxide – CO₂ – gas into a liquid. When carbon dioxide is added to a sealed bottle or can containing water, the pressure in the bottle or can increases, and the carbon dioxide dissolves into the liquid,” Michael W. Crowder, Professor of Chemistry and Biochemistry at Miami University, explains in a piece for The Conversation.

“The CO₂ above the liquid and the CO₂ dissolved in the liquid reach chemical equilibrium. Chemical equilibrium essentially means the rate that CO₂ dissolves into the liquid is equal to the rate that CO₂ is released from the liquid. It’s based on the amounts of CO₂ both in the air and in the liquid.”

Opening up the bottle causes the pressure in the air above the liquid to drop to match the surrounding environment. At this point, carbonic acid (H₂CO₃) converts back to CO₂, and the gas bubbles at the surface. 

Advertisement



How quickly the CO₂ escapes depends upon the surface area of the liquid. E.g. if you pour it directly into the bottom of a glass, that increases the surface area dramatically compared to pouring it slowly down the sides, and the result is that the carefully poured glass will retain fizz for longer.

When you shake a bottle of soda, what you are really doing is making the gas within the bottle above the soda mix into the liquid. Since the liquid is already at maximum saturation, CO₂ can no longer dissolve into it, and instead it forms bubbles throughout the bottle. These bubbles introduce more surface area.

“Without shaking, the only exposed surface is at the neck of the bottle. But if you shake, bubbles become dispersed through the liquid and the surface area becomes very large, as each bubble now represents a liquid-gas interface,” Joe Schwarcz of the McGill Office for Science and Society explains in a blog post. “The dissolved carbon dioxide quickly evaporates into each bubble, causing the bubbles to expand, thereby propelling the liquid out of the bottle as a foam.”

Advertisement

All “explainer” articles are confirmed by fact checkers to be correct at time of publishing. Text, images, and links may be edited, removed, or added to at a later date to keep information current.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Hong Kong security chief steps up pressure on city’s main press group
  2. One Identity has acquired OneLogin, a rival to Okta and Ping in sign-on and identity access management
  3. “Starquakes” On Neutron Stars Could Be Source Of Mysterious Fast Radio Bursts
  4. The Smallest Mammal In The World Lived 53 Million Years Ago

Source Link: Shaking A Bottle Of Cola Doesn't Increase Its Pressure. So Why Does It Explode?

Filed Under: News

Primary Sidebar

  • For First Time, The Mass And Distance Of A Solitary “Rogue” Planet Has Been Measured
  • For First Time, Three Radio-Emitting Supermassive Black Holes Seen Merging Into One
  • Why People Still Eat Bacteria Taken From The Poop Of A First World War Soldier
  • Watch Rare Footage Of The Giant Phantom Jellyfish, A 10-Meter-Long “Ghost” That’s Only Been Seen Around 100 Times
  • The Only Living Mammals That Are Essentially Cold-Blooded Are Highly Social Oddballs
  • Hottest And Earliest Intergalactic Gas Ever Found In A Galaxy Cluster Challenges Our Models
  • Bayeux Tapestry May Have Been Mealtime Reading Material For Medieval Monks
  • Just 13 Letters: How The Hawaiian Language Works With A Tiny Alphabet
  • Astronaut Mouse Delivers 9 Pups A Month After Return To Earth
  • Meet The Moonfish, The World’s Only Warm-Blooded Fish That’s 5°C Hotter Than Its Environment
  • Neanderthals Repeatedly Dumped Horned Skulls In This Cave For An Unknown Ritual Purpose
  • Will The Earth Ever Stop Spinning?
  • Ammonites Survived The Asteroid That Killed The Dinosaurs, So What Killed Them Not Long After?
  • Why Do I Keep Zapping My Cat? The Strange Science Of Cats And Static Electricity
  • A Giant Volcano Off The Coast Of Oregon Is Scheduled To Erupt In 2026, JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere, And Much More This Week
  • The UK’s Tallest Bird Faced Extinction In The 16th Century. Now, It’s Making A Comeback
  • Groundbreaking Discovery Of Two MS Subtypes Could Lead To New Targeted Treatments
  • “We Were So Lucky To Be Able To See This”: 140-Year Mystery Of How The World’s Largest Sea Spider Makes Babies Solved
  • China To Start New Hypergravity Centrifuge To Compress Space-Time – How Does It Work?
  • These Might Be The First Ever Underwater Photos Of A Ross Seal, And They’re Delightful
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version