• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Skateboarding Robots? Skateboarding Robots!

March 21, 2025 by Deborah Bloomfield

From the Mechanical Turk to Rosey Jetson to Data himself, robots have often been imagined as sophisticated machines, capable of running a household while winning at chess and enjoying a good Sherlock Holmes mystery. But here’s a counterpoint: what if, in real life, we just made them do sick heelflips and ollies instead?

ADVERTISEMENT

It’s not as senseless as it sounds. “Existing quadrupedal locomotion approaches do not consider contact-rich interaction with objectives,” explained Sangli Teng, a PhD student at the University of Michigan’s Computational Autonomy and Robotics Laboratory, aka the CURLY Lab, and coauthor of a new yet-to-be-peer reviewed paper aiming to fill in that gap in the literature. Their solution: an algorithmic framework for training robots with reinforcement-based learning, designed specifically for coping with complex and changeable contact-based tasks.

What kind of tasks, you say? Well… skateboarding. Obviously.

“Our work was aimed at designing a pipeline for such contact-guided tasks that are worth studying, including skateboarding,” Teng told TechXplore this week. “The University of Michigan has a long history of developing hybrid dynamical systems, which inspired us to identify such hybrid effects via data-driven approaches in AI.”

It is, basically, the pinnacle of robotics that they’re aiming for. Legged robots, able to interact with the world with hybrid dynamics – that is, able to switch between smooth movement and jumpy, discrete changes. “For example, when a bouncing ball interacts with the ground, the ball has continuous dynamics in the air and discrete state transitions when colliding with the ground,” Teng explained.



Such dynamics are vital for imitating natural movement, and are widely used in robotics already – but they’re not exactly easy to implement, for a couple of reasons. If you beef up the algorithm’s restrictions, it doesn’t leave enough wiggle room for those switches between behaviors to work properly; if, on the other hand, you try to leave it more open, letting the robot learn for itself when to change up its style, then you’re likely relying on unpredictable and potentially insufficient input. It’s lose-lose.

To counter these problems, Teng and his colleagues developed what they call Discrete-Time Hybrid Automata Learning, or DHAL: “a framework using on-policy Reinforcement Learning to identify and execute mode-switching without trajectory segmentation or event function learning,” the paper explains. Basically, it’s a way to make the robots themselves figure out when and where their behavior should change – “compared to the existing methods, DHAL does not require manual identification of the discrete transition or prior knowledge of the number of the transition states,” Teng said.

ADVERTISEMENT

For example, “in the pushing, gliding and upboarding phase, DHAL will automatically output different labels,” he explained. “Our method can be applied to state estimation of hybrid dynamical systems to find out if such transition occurs. With this transition information, the system can better estimate the states to assist the decision making.”

That doesn’t just mean less work for the human programmers. DHAL results in more smooth, intuitive movement than previous frameworks – the robots not only came up with movements that totally made sense for skateboarding, but they were so proficient that they could mount the boards independently, pull carts along behind themselves, and even successfully navigate a real-world skate park (which sounds all kinds of adorable, if we’re honest).

Now, while nobody’s arguing that teaching tiny robots to skateboard isn’t a noble goal in and of itself, the team has other ambitions for their work. While the robots are still pretty limited in skill – they can’t do anything super complex yet like any rad ollies or Smith grinds or, if we’re honest, just getting up off the board and walking away – in future, they and their programs might have myriad applications.

“We now plan to apply this framework to other scenarios, such as dexterous manipulation (i.e., the manipulation of objects with multiple fingers or arms),” Teng told TechXpress. “DHAL is expected to predict the contact more accurately, thus allowing planning and control algorithms to make better decisions.”

ADVERTISEMENT

The paper, which has not yet been peer-reviewed, can be read on the ArXiv.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Skype alumni head to court in a battle over Starship Technologies and Wire
  2. Soccer-West Ham win again, Leicester and Napoli falter
  3. Was Jesus A Hallucinogenic Mushroom? One Scholar Certainly Thought So
  4. Lacking Company, A Dolphin In The Baltic Is Talking To Himself

Source Link: Skateboarding Robots? Skateboarding Robots!

Filed Under: News

Primary Sidebar

  • Have You Seen This Snake? Florida Wants Your Help Finding Rare Species Seen Once In 50 Years
  • Plague Confirmed In Lake Tahoe Area For First Time In 5 Years, California Officials Say
  • Supergiant Star Spotted Blowing Milky Way’s Largest Bubble Of Its Kind, Surprising Astronomers
  • Game Theory Promised To Explain Human Decisions. Did It?
  • Genes, Hormones, And Hairstyling – Here Are Some Causes Of Hair Loss You Might Not Have Heard Of
  • Answer To 30-Year-Old Mystery Code Embedded In The Kryptos CIA Sculpture To Be Sold At Auction
  • Merry Mice: Human Brain Cells Transplanted Into Mice Reduce Anxiety And Depression
  • Asteroid-Bound NASA Mission Snaps Earth-Moon Portrait From 290 Million Kilometers Away
  • Forget State Mammals – Some States Have Official Dinosaurs, And They’re Awesome
  • Female Jumping Spiders Of Two Species Prefer The Sexy Red Males Of One, Leading To Hybridization
  • Why Is It So Difficult To Find New Moons In The Solar System?
  • New “Oxygen-Breathing” Crystal Could Recharge Fuel Cells And More
  • Some Gut Bacteria Cause Insomnia While Others Protect Against It, 400,000-Person Study Argues
  • Neanderthals And Homo Sapiens Got It On 100,000 Years Earlier Than We Thought
  • “Womb Of The Universe”: Native American Tribal Elders Help Archaeologists Decipher Ancient Rock Art In Missouri Cave
  • 16,000-Year-Old Paintings Suggest Prehistoric Humans Risked Their Lives To Enter “Shaman Training Cave”
  • Final Gasps Of A Dying Star Seen Through A Record-Breaking 130 Years Of Data
  • COVID-19 “Vaccine Alternative” Injection Could Be On Fast-Track To Approval From FDA
  • New Jersey Officials Investigate Possible First Locally Acquired Malaria Case Since 1991
  • First-of-Its-Kind Bright Orange Nurse Shark Recorded Off Costa Rica Makes History
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version