• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Smooth Walking Isn’t Easy, But This State-Of-The-Art Bionic Ankle Can Do It

July 11, 2024 by Deborah Bloomfield

A new robotic ankle controlled by electrical signals in residual muscles below the knee is showing promise in improved mobility and reduced pain. After just two practice sessions, around six hours in total, seven participants in a clinical trial testing the new device were able to walk as fast as non-amputees and the movements of their bionic joint mimicked natural ankle movements. 

Advertisement



Walking is easy, when you don’t have to think about it. In reality, controlling an action seemingly as simple as walking is not just a question of contracting the right muscles. It is a complex choreography of control and feedback. 

When you decide to take a step, your brain sends signals down your spinal cord and into your legs, telling the muscles to contract, bending your joints. The movement and position of each joint is controlled by the contrasting action of two types of muscles: agonists and antagonists.  

Think about your arm. When you flex your elbow, your biceps acts as the agonist contracting and bringing your forearm closer to your upper arm. At the same time, your triceps (on the other side of the arm), the antagonist in this movement, is relaxing and allowing the movement to happen. Conversely, when you stretch your arm, your triceps acts as the agonist pulling the forearm away and the biceps is the antagonist relaxing its pull. 

By reading out the tension in both the biceps and the triceps your brain can figure out at what angle your elbow is bent. The ability to perceive this tension is called proprioception: the perception of yourself (proprio in Latin). This then informs your motor system. 

Advertisement

When you contract your leg muscles to walk, you bend the joints in your hip, knee, and ankle. The position of each of these joints at the start and end of the step, and the resistance each movement might meet, is different when you walk in all types of situations (dodgy terrains, slopes, sticky mud). This makes it impossible for the brain to just send a one-size-fits-all “walk” command.  

Walking is a lot to think about 

Leg amputees have lost a lot of their muscles, and both the nerves that control muscle contraction as well as the proprioceptive ones that send feedback about how the movement is going. Developments in prosthetic limbs are trying to restore the full orchestra of commands and feedback.  

In early prosthetics, patients could control their limb with a body-powered harness: e.g. they would learn to move their shoulder to control their prosthetic hand. Then, more sophisticated prostheses came along that used electrical signals in the muscles of the upper leg to steer ankle joint movements. 

Until now, feedback signals were not being utilized, resulting in movements that were less flexible and unable to adapt to a changing environment.  

Advertisement

A new type of leg prosthesis is now promising smoother walking: the agonist-antagonist myoneural interface (AMI). That’s a mouthful. The AMI restores proprioceptive signaling by reconnecting the agonist and antagonist muscles. The brain and the device can then read out the complementary tension in the two muscles, the same way we do with our biceps and triceps. 

The first prosthetic of this type is a bionic ankle for people with amputations below the knee where the muscles of the shin and the calf can be reattached. Because the agonist and antagonist are connected again, the bending of the joints can be read out by the opposing tension in the two muscles. This tension adapts to various situations, like inclined terrain and stairs.  

A decoder in the prosthesis can dynamically adjust the ankle flexion, the way that an intact limb would. The range of ankle movements in the prosthesis during walking was strikingly similar to that of non-amputees. 



Advertisement

So, what’s next for prosthetic legs? Osseoperception. The authors point to research that shows improved integration of prosthetics when they are anchored to the bone (ossum in Latin). Bionic limbs are getting closer and closer not only to moving like a biological limb, but to feeling like one too. 

The study is published in Nature Medicine.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. ‘Incredible fear’ among women across Afghanistan -U.N. official
  2. Stocks find fleeting relief in Evergrande deal; Fed looms
  3. Brokerage Robinhood introduces 24/7 phone support after communications criticisms
  4. Flowery Funerals? The Controversial Neanderthal Found In An Iraqi Cave

Source Link: Smooth Walking Isn't Easy, But This State-Of-The-Art Bionic Ankle Can Do It

Filed Under: News

Primary Sidebar

  • Inhaling “Laughing Gas” Could Treat Severe Depression, Live Seven-Arm Octopus Spotted In The Deep Sea, And Much More This Week
  • People Are Surprised To Learn That The Closest Planet To Neptune Turns Out To Be Mercury
  • The Age-Old “Grandmother Rule” Of Washing Is Backed By Science
  • How Hero Of Alexandria Used Ancient Science To Make “Magical Acts Of The Gods” 2,000 Years Ago
  • This 120-Million-Year-Old Bird Choked To Death On Over 800 Stones. Why? Nobody Knows
  • Radiation Fog: A 643-Kilometer Belt Of Mist Lingers Over California’s Central Valley
  • New Images Of Comet 3I/ATLAS From 4 Different Missions Reveal A Peculiar Little World
  • Neanderthals Used Reindeer Bones To Skin Animals And Make Leather Clothes
  • Why Do Power Lines Have Those Big Colorful Balls On Them?
  • Rare Peek Inside An Egg Sac Reveals An Adorable Developing Leopard Shark
  • What Is A Superhabitable Planet And Have We Found Any?
  • The Moon Will Travel Across The Sky With A Friend On Sunday. Here’s What To Know
  • How Fast Does Sound Travel Across The Worlds Of The Solar System?
  • A Wonky-Necked Giraffe In California Lived To 21 Against The Odds
  • Seal Finger: What Is This Horrible Infection That Makes Your Hand Swell Like A Balloon?
  • “They Usually Aren’t Second Tier”: When Wolves Adopt Pups From Rival Packs
  • The Road To New Physics Beyond Our Knowledge Might Pass Through Neutrinos
  • Flu Season Is Revving Up – What Are The Symptoms To Look Out For?
  • Asteroid Bennu Was Missing Just One Ingredient Needed To Kickstart Life – We just Found It
  • Rare Core Samples Provide “Once In A Lifetime” Opportunity To Study The Giant Line That Slices Through Scotland
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version