• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Spirals, Tails, And Reflective Dust Were Released In The DART Asteroid Collision

March 21, 2023 by Deborah Bloomfield

Last September, DART hit asteroid Dimorphos, the small companion of asteroid Didymos. The impact was a test of planetary defense, showing that we can truly shift the orbit of a celestial body. But it was also a chance to study what an impact on an asteroid looks like. And astronomers did not waste time in pointing some of the most powerful telescopes at it.

Using the Very Lage Telescope, part of the European Southern Observatory (ESO), astronomers were able to spot features, composition, and peculiarities of the dust released in the impact. And it gave them a great deal of information about what happens when asteroids collide.

Advertisement

“Impacts between asteroids happen naturally, but you never know it in advance,” the lead author of one of two new studies, Cyrielle Opitom, an astronomer at the University of Edinburg, said in a statement. “DART is a really great opportunity to study a controlled impact, almost as in a laboratory.”

This research team followed the evolution of the dust cloud from mere hours after the impact to a month later. At first, the ejected cloud was bluer in color than the asteroid, suggesting that it was made of finer particles, but as time went by and it expanded, the team saw structures develop such as clumps, spirals, and long tails. And as more time went by, they appeared redder and redder, suggesting large particles were the main components of these.

The team also looked for water ice from the asteroid – there was little hope of finding it as they tend to be very dry, but it was important to check. They also looked for any residual fuels from DART, but it impacted the asteroid almost empty.

“We knew it was a long shot,” Opitom explained, “as the amount of gas that would be left in the tanks from the propulsion system would not be huge. Furthermore, some of it would have traveled too far to detect it with MUSE by the time we started observing.”

Advertisement



The other research team looked at the polarization of light from the cloud of debris following the impact. Polarized light is light with a specific orientation (the electromagnetic fields of it oscillate on a specific plane) and the atmosphere and surface of a celestial body can change and polarize the light of the Sun. Or clouds of particles from a collision.

“Tracking how the polarisation changes with the orientation of the asteroid relative to us and the Sun reveals the structure and composition of its surface,” lead author Stefano Bagnulo, an astronomer at the Armagh Observatory and Planetarium in the UK, explained.



Advertisement

Following the impact, the scientists noticed that the level of polarization decreased but the brightness of the system increased, suggesting that the material ejected might have been more pristine and brighter, coming from the subsurface so not previously exposed to solar radiation. Or it could be a question of size.

”We know that under certain circumstances, smaller fragments are more efficient at reflecting light and less efficient at polarising it,” explained Zuri Gray, a PhD student also at the Armagh Observatory and Planetarium.

This is just the beginning of this data analysis. More work is currently being done to analyze what the ESO observatories have seen in this fantastic event.

The paper led by Opitom is published in Astronomy & Astrophysics, and the work led by Bagnulo in The Astrophysical Journal Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Poland condemns jailing of Belarus protest leaders
  2. China energy crunch triggers alarm, pleas for more coal
  3. China proposes adding cryptocurrency mining to ‘negative list’ of industries
  4. Stranded Dolphins’ Brains Show Signs Of Alzheimer’s-Like Disease

Source Link: Spirals, Tails, And Reflective Dust Were Released In The DART Asteroid Collision

Filed Under: News

Primary Sidebar

  • A Giant Volcano Off The Coast Of Oregon Is Scheduled To Erupt In 2026, JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere, And Much More This Week
  • The UK’s Tallest Bird Faced Extinction In The 16th Century. Now, It’s Making A Comeback
  • Groundbreaking Discovery Of Two MS Subtypes Could Lead To New Targeted Treatments
  • “We Were So Lucky To Be Able To See This”: 140-Year Mystery Of How The World’s Largest Sea Spider Makes Babies Solved
  • China To Start New Hypergravity Centrifuge To Compress Space-Time – How Does It Work?
  • These Might Be The First Ever Underwater Photos Of A Ross Seal, And They’re Delightful
  • Mysterious 7-Million-Year-Old Ape May Be Earliest Hominin To Walk On Two Feet
  • This Spider-Like Creature Was Walking Around With A Tail 100 Million Years Ago
  • How Do GLP-1 Agonists Like Ozempic and Wegovy Work?
  • Evolution In Action: These Rare Bears Have Adapted To Be Friendlier And Less Aggressive
  • Nearly 100 Years After Debating Bohr On Quantum Mechanics, New Experiment Proves Einstein Wrong – Again
  • 9,500-Year-Old Headless Skeleton Is New World’s Oldest Known Cremated Adult
  • World’s Longest Jellyfish Can Reach A Whopping 36 Meters, Even Bigger Than A Blue Whale
  • In 1994, December 31 Was Wiped From Existence In Kiribati
  • A Giant Volcano Off The Coast Of Oregon Failed To Erupt On Time. Its New Schedule: 2026
  • Here Are 5 Ways In Which Cancer Treatment Advanced In 2025
  • The First Marine Mammal Driven To Extinction By Humans Disappeared Only 27 Years After Being Discovered
  • The Planet’s Oldest Bee Species Has Become The World’s First Insect To Be Granted Legal Rights
  • Facial Disfiguration: Why Has The Face Been The Target Of Punishment Across Time?
  • The World’s Largest Living Reptile Can “Surf” Over 10 Kilometers To Get Between Islands
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version