• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Super Speedy Synapses In The Ear Keep Us From Falling, And Now We Know How

January 19, 2023 by Deborah Bloomfield

After over 15 years of research, scientists have at last revealed the secrets of a very special synapse. Buried deep in the inner ear, these synapses can process signals faster than any others in the body, but neuroscientists could not figure out how this was possible – until now.

Humans, along with many other animals, rely on a delicate system of structures that allow us to walk and turn our heads without getting dizzy and falling over. This is known as the vestibular system – and when it goes wrong, it can lead to conditions like vertigo and other balance disorders. An estimated one in three Americans over the age of 40 are affected; treatment can be tricky, and patients are at risk of falls, causing further injury.

Advertisement

The reflexes driven by the vestibular system are the fastest anywhere in the nervous system. Previous studies uncovered that this was down to a special type of synapse, which can transmit information without the usual 0.5-millisecond delay that neurotransmitter-based signaling requires.

This superfast process was termed “nonquantal transmission”. However, although scientists had been able to put a name to the phenomenon, they still weren’t fully sure how it worked. The new study, led by a team at Rice University, has provided some answers.

The inner ear contains extremely sensitive cells called hair cells. As the name suggests, bundles of hair-like sensors on these cells detect movements of the head via the surrounding fluid. They transmit information to neurons that connect directly to the brain, providing constant updates so we can remain upright and keep our vision steady.

Advertisement

The neurons meet the hair cells at a cuplike structure called a calyx. As you can see in the diagram below, the calyx surrounds the end of the hair cell, leaving a minuscule gap – the synaptic cleft.

diagram showing nonquantal transmission

The hair cell (blue) is surrounded by the cuplike calyx (green) of its partner nerve cell. Ions flow through channels on either side, creating an electrical potential across the synaptic cleft that allows information to flow at superfast speeds. Image credit: Aravind Chenrayan Govindaraju/Rice University

“The vestibular calyx is a wonder of nature,” said study co-author Anna Lysakowski, from the University of Illinois at Chicago, in a statement. “Its large cup-shaped structure is the only one of its kind in the entire nervous system […] We’ve been trying to figure out its special purpose for a long time.”

The authors created a computer model to simulate nonquantal transmission, looking specifically at what was going on inside the synaptic cleft. They observed that the speed of transmission at these synapses was down to changes in electrical potential, by tracking the flow of potassium ions through channels in the hair cell and across the cleft.

Advertisement

“The mechanism turns out to be quite subtle, with dynamic interactions giving rise to fast and slow forms of nonquantal transmission,” said corresponding author Rob Raphael.

“The key capability was the ability to predict the potassium level and electrical potential at every location within the cleft,” added co-author Ruth Eatock, from the University of Chicago.

The team concluded that it was the very shape of the calyx itself that makes this type of transmission possible, and suggest in their paper that “this mechanism of electrical transmission between cells may act at other synapses.”

Advertisement

This work has been a long time coming for co-author Imran Quraishi in particular. Now an assistant professor at Yale University, Quraishi began working on an early version of the computer model during his graduate studies in Raphael’s research group. Over the intervening years, more and more evidence to support the idea of nonquantal transmission had come to light, but the underlying mechanism was still unclear.

“The unfinished work had weighed on me,” Quraishi said. Thankfully, though, help came in the form of graduate student Aravind Govindaraju, who took up the reins of the project in 2018.

As Raphael puts it, the culmination of all this work has provided science with some long-awaited answers.

Advertisement

“For the past 30 years – since the original observation of nonquantal transmission – scientists have wondered, ‘Why is this synapse so fast?’ and, ‘Is the transmission speed related to the unique calyx structure?’ We have provided answers to both questions.”

The paper is published in PNAS.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Social network Peanut expands to include more women with launch of Peanut Menopause
  2. Marketmind: Watch those spiralling gas prices
  3. Thai central bank chief warns economy remains fragile, exposed to shocks
  4. Be On The Cutting-Edge Of Tech With This Top-Rated Learning Bundle

Source Link: Super Speedy Synapses In The Ear Keep Us From Falling, And Now We Know How

Filed Under: News

Primary Sidebar

  • Astronomical Winter Vs. Meteorological Winter: What’s The Difference?
  • Do Any Animal Species Actively Hunt Humans As Prey?
  • “What The Heck Is This?”: JWST Reveals Bizarre Exoplanet With Inexplicable Composition
  • The Animal With The Strongest Bite Chomps Down With A Force Of Over 16,000 Newtons
  • The Eschatian Hypothesis: Why Our First Contact From Aliens May Be Particularly Bleak, And Nothing Like The Movies
  • The Great Mountain Meltdown Is Coming: We Could Reach “Peak Glacier Extinction” By 2041
  • Comet 3I/ATLAS Is Experiencing A Non-Gravitational Acceleration – What Does That Mean?
  • The First Human Ancestor To Leave Africa Wasn’t Who We Thought It Was
  • Why Do Warm Hugs Make Us Feel So Good? Here’s The Science
  • “Unidentified Human Relative”: Little Foot, One Of Most Complete Early Hominin Fossils, May Be New Species
  • Thought Arctic Foxes Only Came In White? Think Again – They Come In Beautiful Blue Too
  • COVID Shots In Pregnancy Are Safe And Effective, Cutting Risk Of Hospitalization By 60 Percent
  • Ramanujan’s Unexpected Formulas Are Still Unraveling The Mysteries Of The Universe
  • First-Ever Footage of A Squid Disguising Itself On Seafloor 4,100 Meters Below Surface
  • Your Daily Coffee Might Be Keeping You Young – Especially If You Have Poor Mental Health
  • Why Do Cats And Dogs Eat Grass?
  • What Did Carl Sagan Actually Mean When He Said “We Are All Made Of Star Stuff”?
  • Lonesome George: The Giant Tortoise Who Was The Very Last Of His Kind
  • Bermuda Sits On A Strange, 20-Kilometer-Thick Structure That’s Like No Other In The World
  • Time Moves Faster Up A Mountain – And That’s Why Earth’s Core Is 2.5 Years Younger Than Its Surface
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version