• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Superheavy Elements Moscovium And Nihonium’s Chemical Properties Finally Revealed

November 6, 2024 by Deborah Bloomfield

The chemical properties of two of the heaviest synthetic elements, moscovium and nihonium, have been established for the first time. Moscovium is now the heaviest element whose chemical properties we know something about. Both elements have been shown to be modestly reactive, but making any useful compounds still runs up against their incredibly short half-lives.

The nuclear age brought with it the capacity to make trans-uranic elements, those filling spots beyond uranium on the periodic table. Although these elements are almost certainly forged in supernova and kilonova explosions along with more familiar heavy elements, their half-lives are so short that none survive on Earth from these events.  

Advertisement

Some of the early trans-uranic discoveries turned out to survive long enough to be studied in depth, and even have applications, such as in the case of plutonium and americium. However, as the nuclei got heavier, the half-lives tended to get shorter (although this correlation is not perfect). 

Moscovium’s longest-lived isotope has a half-life of less than a second, so you have to make a lot of it to have enough left to study for an experiment lasting even a minute. Nihonium-286 lasts a relatively stately 9.5 seconds, but there is still no time to waste.

Consequently, we know very little about how the most recent discoveries interact with other elements.

Nevertheless, chemists love a challenge, and a team from the Helmholtz Association of German Research Centres has now assessed the reactivity of elements 113 (nihonium) and 115 (moscovium), having done so for 114 (flerovium) previously. 

Advertisement

The behavior of these elements is particularly interesting because such massive nuclei accelerate the electrons, circling them to significant fractions of the speed of light. For lead and some heavier elements, this means the outer electrons’ behavior can no longer be modeled purely by classical mechanics, and instead, the behavior predicted by the special theory of relativity must be taken into account. 

The periodic table exists because, long before chemists were aware of electrons, they noticed patterns in the chemistry of elements and placed them in the same columns. Consequently, one can usually predict an element’s chemical behavior by looking at those above it on the table.

However, flerovium, which sits directly below lead on the table, doesn’t entirely fit. It’s less chemically reactive than lead, is thought to melt below room temperature, and turns into a gas quite easily as well – considering how toxic lead is, we can be grateful it doesn’t behave like its downstairs neighbor.

Despite the differences between flerovium and lead, the researchers found that when looked at in the context of their neighbors, commonalities emerge. Nihonium and moscovium both turn out to be more reactive than flerovium in the newly published work, just as thallium and bismuth are for lead. Indeed, at the bottom level of the periodic table (so far), the extra reactivity is possibly even more extreme.

Advertisement

To perform the experiment, the team fired beams of calcium-48 ions at sheets of americium-243 to combine them and form moscovium-288, which briefly becomes nihonium-284 when it undergoes alpha decay.

The products were too scarce and short-lived to test using traditional chemistry, so instead an inert gas was used to carry them over a quartz detector, allowing the team to measure if they bonded to it. Once the atoms decayed to roentgenium and further down the chain, the team could observe these atoms’ binding behavior as well, but these are already much better understood.

“We have succeeded in increasing the efficiency and reducing the time required for the chemical separation to such an extent that we were able to observe the very short-lived moscovium-288, and, at an even larger rate of about two detected atoms every week, its daughter nihonium-284,” said first author Dr Alexander Yakushev in a statement. 

Yes, you read that right, it took seven weeks to detect the bonding behavior of 14 nihonium atoms, and just four moscovium atoms in the same time. It’s not much of a sample size, but the fact that not all the atoms bonded strongly enough to the quartz to stick, instead reaching a downstream gold detector, confirmed both elements are less reactive than their counterparts above them on the table. 

Advertisement

The authors conclude that an enhanced version of lead’s relativistic effect causes flerovium to behave almost like a noble gas, barely bonding with other elements. Although most intense at flerovium, enough of this local effect spills over to nihonium and moscovium to make them only modestly reactive. Copernicium (element 112) has previously been shown to also be less reactive than either of the elements studied in this experiment.

If they lasted longer, flerovium atoms might be useful for replacing lead in products like batteries. As it is, it’s hard to imagine any practical device made with any of these elements, but understanding their chemistry may help us find applications for longer-lasting elements.

The study is published in Frontiers in Chemistry. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. No ‘magic wand’ to fix Lebanon crisis, new prime minister says
  2. Boxing-I’ll be sad and lonely after career is over, says Fury
  3. A Fly Lands On Your Food, Is It Still Safe To Eat?
  4. Researchers Warn We Could Run Out Of Data To Train AI By 2026. What Then?

Source Link: Superheavy Elements Moscovium And Nihonium’s Chemical Properties Finally Revealed

Filed Under: News

Primary Sidebar

  • “I Wasn’t Prepared For The Sheer Number Of Them”: Cave Of Mummified Never-Before-Seen Eyeless Invertebrates Amazes Scientists
  • Asteroid Day At 10: How The World Is More Prepared Than Ever To Face Celestial Threats
  • What Happened When A New Zealand Man Fell Butt-First Onto A Powerful Air Hose
  • Ancient DNA Confirms Women’s Unexpected Status In One Of The Oldest Known Neolithic Settlements
  • Earth’s Weather Satellites Catch Cloud Changes… On Venus
  • Scientists Find Common Factors In People Who Have “Out-Of-Body” Experiences
  • Shocking Photos Reveal Extent Of Overfishing’s Impact On “Shrinking” Cod
  • Direct Fusion Drive Could Take Us To Sedna During Its Closest Approach In 11,000 Years
  • Earth’s Energy Imbalance Is More Than Double What It Should Be – And We Don’t Know Why
  • We May Have Misjudged A Fundamental Fact About The Cambrian Explosion
  • The Shoebill Is A Bird So Bizarre That Some People Don’t Even Believe It’s Real
  • Colossal’s “Dire Wolves” Are Now 6 Months Old – And They’ve Doubled In Size
  • How To Fake A Fossil: Find Out More In Issue 36 Of CURIOUS – Out Now
  • Is It True Earth Used To Take 420 Days To Orbit The Sun?
  • One Of The Ocean’s “Most Valuable Habitats” Grows The Only Flowers Known To Bloom In Seawater
  • World’s Largest Digital Camera Snaps 2,104 New Asteroids In 10 Hours, Mice With 2 Dads Father Their Own Offspring, And Much More This Week
  • Simplest Explanation For “Anomalous” Signals Coming From Underneath Antarctica Ruled Out
  • “Lizard Shampoo” And Pagan Texts Suggest “Dark Age” Medicine Wasn’t So Dark After All
  • Japanese Macaques May Mourn Their Dead – As Long As They’re Not Maggot-Infested
  • This Is What You’d Hear If You Listened To Voyager’s Golden Record NASA Sent To Interstellar Space
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version