• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Supermassive Black Hole Pair Found Just 300 Light-Years Apart, The Smallest Ever Separation

September 11, 2024 by Deborah Bloomfield

A pair of supermassive black holes have been observed on the road to merging as their galaxies come together. The pair, seen by both the Hubble Space Telescope and Chandra X-ray Observatory are 300-400 light-years apart, which for most purposes is a great distance, but makes for the least separation ever confirmed between behemoths like these. This provides an unprecedented opportunity to study what happens when enormous black holes approach each other.

Unlike individual stars, galaxies run into each other very frequently, if by frequent you mean once every few billion years. With most large and medium-sized galaxies having supermassive black holes (SMBHs) at their cores, galactic collisions bring them into contact. Just this week a paper made the case that our own galaxy’s SMBH shows signs of having swallowed another 9 billion years ago.

SMBH’s can drive the chemistry of their whole galaxy, and the interactions between them are likely to stir things up in ways astronomers are keen to understand. The process of coming together takes tens of millions of years at least, but if we can see examples at different stages it’s almost like getting a stop motion film.

The galaxy MCG-03-34-64 is unusual for the amount of gas it holds, offering plenty of potential for future star formation, and is known for its very short wavelength X-ray spectrum. When Hubble and Chandra studied the intense brightness at its core they found something else. The brightness, known as an Active Galactic Nucleus (AGN), is a product of material falling into a black hole and heating up through friction as it does.

Hubble's image of MCG-03-34-064 with the centre expanded. Three bright spots are visible on close observation, two of which have the X-ray emissions indicative or black holes. The third is probably a patch of gas.

Hubble’s image of MCG-03-34-064 with the center expanded. Three bright spots are visible on close observation, two of which have the X-ray emissions indicative or black holes. The third is probably a patch of gas.

Image credit: NASA, ESA, Anna Trindade Falcão (CfA); image processing: Joseph DePasquale (STScI)

In this case, however, the telescopes revealed there are two SMBHs contributing to that light. We can’t see either directly of course, or even the shadow like we did with M87, but Hubble picked up diffraction spikes from hot oxygen gas, indicating great brightness in a tiny part of its field of view. The suspicion that this indicated a second accretion disk within the main one was confirmed using X-rays collected by Chandra.

“When we looked at MCG-03-34-64 in the X-ray band, we saw two separated, powerful sources of high-energy emission coincident with the bright optical points of light seen with Hubble. We put these pieces together and concluded that we were likely looking at two closely spaced supermassive black holes,” said Dr Anna Trindade Falcão of the Harvard and Smithsonian Center for Astrophysics in a statement. Archival radio data from the Very Large Array provided further confirmation.

Advertisement

Hubble also detected a third source of bright light within MCG-03-34-64’s core, but neither it nor the other telescopes could determine what it is. One working theory is that jets from one of the black holes are slamming into a denser patch of gas.



When galaxies merge, the black holes do not run directly into each other, at least not often. Instead, they spiral around each other in an orbit that decays as gravitational waves carry away a little of the system’s energy, like a satellite dragged down by the outer reaches of the atmosphere. Eventually they merge, causing spacetime to ring like a bell.

We’ve detected the gravitational waves from stellar mass black hole mergers, but SMBH’s would produce much longer wavelengths that exceed our capacity. There are, however, hopes that future space-based gravitational wave observatories will be able to achieve this.

Advertisement

We know of numerous merging galaxies with two SMBHs, including one consisting of a truly humongous pair that changes color during orbit. Most, however, are very distant from us, since we are seeing them at a time when such mergers were more common. Of the closer ones, where our view is better, their separations are usually greater – before the most interesting stage of the process.

One candidate for a closer SMBH pair has been found, using radio telescopes, but observations at other wavelengths did not confirm it, leaving its status in doubt. It’s harder to find SMBHs close together, not only because the last part of the merger process is completed more quickly, but because the emitted light can be difficult to separate. At a little over 200 million light-years away, MCG-03-34-64 is close enough that we can distinguish the pair.

The study is published open access in The Astrophysical Journal.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Near Space Labs closes $13M Series A to send more Earth imaging robots to the stratosphere
  2. Berlin police investigating ‘Havana syndrome’ cases at U.S. embassy – Spiegel
  3. What Is An Adam’s Apple?
  4. Nearest Young Earth-Sized Planet Is Half Lava And Metal As Hell

Source Link: Supermassive Black Hole Pair Found Just 300 Light-Years Apart, The Smallest Ever Separation

Filed Under: News

Primary Sidebar

  • A Giant Volcano Off The Coast Of Oregon Is Scheduled To Erupt In 2026, JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere, And Much More This Week
  • The UK’s Tallest Bird Faced Extinction In The 16th Century. Now, It’s Making A Comeback
  • Groundbreaking Discovery Of Two MS Subtypes Could Lead To New Targeted Treatments
  • “We Were So Lucky To Be Able To See This”: 140-Year Mystery Of How The World’s Largest Sea Spider Makes Babies Solved
  • China To Start New Hypergravity Centrifuge To Compress Space-Time – How Does It Work?
  • These Might Be The First Ever Underwater Photos Of A Ross Seal, And They’re Delightful
  • Mysterious 7-Million-Year-Old Ape May Be Earliest Hominin To Walk On Two Feet
  • This Spider-Like Creature Was Walking Around With A Tail 100 Million Years Ago
  • How Do GLP-1 Agonists Like Ozempic and Wegovy Work?
  • Evolution In Action: These Rare Bears Have Adapted To Be Friendlier And Less Aggressive
  • Nearly 100 Years After Debating Bohr On Quantum Mechanics, New Experiment Proves Einstein Wrong – Again
  • 9,500-Year-Old Headless Skeleton Is New World’s Oldest Known Cremated Adult
  • World’s Longest Jellyfish Can Reach A Whopping 36 Meters, Even Bigger Than A Blue Whale
  • In 1994, December 31 Was Wiped From Existence In Kiribati
  • A Giant Volcano Off The Coast Of Oregon Failed To Erupt On Time. Its New Schedule: 2026
  • Here Are 5 Ways In Which Cancer Treatment Advanced In 2025
  • The First Marine Mammal Driven To Extinction By Humans Disappeared Only 27 Years After Being Discovered
  • The Planet’s Oldest Bee Species Has Become The World’s First Insect To Be Granted Legal Rights
  • Facial Disfiguration: Why Has The Face Been The Target Of Punishment Across Time?
  • The World’s Largest Living Reptile Can “Surf” Over 10 Kilometers To Get Between Islands
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version