• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Synthetic Diamonds Made In Minutes Not Days Could Upend Gemstone Economics

April 26, 2024 by Deborah Bloomfield

A new method for making diamonds bypasses the high temperatures and pressures, opening the door to making them at a fraction of the existing cost. The world of fine crystal control called The Diamond Age in science fiction may be closer than we think.

Although we have known how to make synthetic diamonds since the 1950s, the dominant process requires temperatures of 1,300-1,600 °C (2,400-2,900 °F) and 50,000 atmospheres of pressure over 5-12 days. This has helped meet the industrial demand for diamonds as cutting instruments, as well as providing colors rare in nature for those whose tastes run that way. However, the cost of the process is close enough to that of finding natural diamonds, whether for industrial purposes or clear gemstones, that the mining industry survives.

Advertisement

That could be about to change with the announcement of a way to make diamonds at ordinary atmospheric pressure. The temperatures are still high – 1,025 °C (1,877 °F) – but even that means big savings compared to the heat currently required. 

Low-pressure diamonds were thought to be a contradiction in terms. Natural diamonds are made in the Earth’s mantle with the force of kilometers of crust bearing down, and most predate multicellular life. The synthetic version uses liquid metal catalysts, but Gigapascal range pressures have still been considered essential.

However, researchers at Korea’s Institute for Basic Science have thrown that out, showing that a liquid metal alloy of gallium, iron, nickel, and silicon can grow diamonds without much pressure in a hydrogen/methane atmosphere. The methane provides the carbon from which the diamond grows.

“This pioneering breakthrough was the result of human ingenuity, unremitting efforts, and the concerted cooperation of many collaborators,” said Professor Rod Ruoff in a statement. He left out a lot of trial and error, which a team at the Institute used when adjusting the mix of metals and other parameters. Although making the diamond itself turns out to be a surprisingly quick process, it was only when the team shifted to a smaller chamber, which took less than one-twelfth the time to prepare, that real progress was made.

Advertisement

Eventually, it was found that when the liquid alloy is 77.75 percent gallium by atomic abundance, 0.25 percent silicon, and 11 percent each of iron and nickel, the diamonds grow near the bottom of the liquid. It’s not a ratio that immediately springs to mind. Moreover, unlike conventional synthetic diamonds, seed particles are not required.

“One day […] when I ran the experiment and then cooled down the graphite crucible to solidify the liquid metal, and removed the solidified liquid metal piece, I noticed a ‘rainbow pattern’ spread over a few millimeters on the bottom surface of this piece,” said graduate student Yan Gong. “We found out that the rainbow colors were due to diamonds!”

Diamond growth as seen at a variety of scales and using different instruments (a-g) and a schematic of the process.

Diamond growth as seen at a variety of scales and using different instruments (a-g) and a schematic of the process.

Image Credit: Gong et al/Nature

The process takes between 10 and 15 minutes to start forming diamonds, and growth stops by 150 minutes, although the team hopes to find ways to overcome this.

The diamonds created so far are small enough – more a film than a gemstone – that diamond companies don’t need to panic quite yet. That could change, however, if methods are found to promote the supersaturated carbon layer that precedes diamond formation. The silicon-vacancy prized for producing colored diamonds, also produced by nitrogen impurities, could make the products ideal for experiments in quantum computing. 

Advertisement

Why this combination of metals and gases gives the desired outcome, is still not fully understood. It is thought the similarity of silicon and carbon bonds may be key, with carbon clusters containing silicon atoms potentially serving as diamond precursors.

Mass production seldom ends up relying on the first version of a process demonstrated in a lab. Ruoff suggests a variety of lower melting point metals might prove useful, either to make the process cheaper still or to produce doped diamonds of particular shades or properties.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  2. Soccer-Liverpool’s Alexander-Arnold ruled out of Man City game
  3. What Are Baby Platypuses Called?
  4. Should You Wash Chicken Before Cooking It?

Source Link: Synthetic Diamonds Made In Minutes Not Days Could Upend Gemstone Economics

Filed Under: News

Primary Sidebar

  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Newly Spotted Vaquita Babies Offer Glimmer Of Hope For World’s Rarest Marine Mammal
  • Do Bees Really “Explode” When They Mate? Yes, Yes They Do
  • How Do We Brush A Hippo’s Teeth?
  • Searching For Nessie: IFLScience Takes On Cryptozoology
  • Your Halloween Pumpkin Could Be Concealing Toxic Chemicals – And Now We Know Why
  • The Aztec Origins Of The Day Of The Dead (And The Celtic Roots Of Halloween)
  • Large, Bright, And Gold: Get Ready For The Biggest Supermoon Of The Year
  • For Just Two Days A Year, These Male Toads Turn A Jazzy Bright Yellow. Now We Know Why
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version