• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

The Cavendish Experiment: In 1797, Henry Cavendish Used Two Small Metal Spheres To Weigh The Entire Earth

November 23, 2025 by Deborah Bloomfield

If someone asked you to weigh the planet and you had not paid close attention in high school physics, you might have no idea where to begin. How do you measure something you are standing on? It is a bit like being told to weigh your own set of scales without having another set to help you.

If you’re struggling, don’t despair. Figuring out how to weigh (well, measure the mass) of the Earth took until 1687, and even then we couldn’t calculate it until 1798. 

At the end of the 1600s, Newton proposed the universal law of gravitation: that every particle attracts every other particle in the universe with a force (F) determined by their masses (M) and the square of the distance between the centers of the objects (R). Math fans may prefer it expressed like this: F=G(M1xM2/D2)

As you can tell from the math, if you have the mass of one of the objects (and all the other information within the equation) you can figure out the mass of the second object. Say you were one of the known masses (or you used a specific weight for ease): you could calculate the weight of the Earth, given that we know roughly how far we are from the Earth’s center. The problem was, in Newton’s time we did not have a value for G, making this impossible.

Newton thought that measuring the gravitational force of an object was not possible for objects smaller than planets and moons. However, this was not the case. Knowing the mass and density of the Earth would be incredibly useful for astronomers, as it would help them calculate the mass and density of other objects in the Solar System, as well as it being interesting to know in its own right. In 1772, the Royal Society set up the “Committee of Attraction” to figure this out.

Attempts were made to measure the average density of the Earth using a mountain in Scotland. The team showed that the sheer mass of Schiehallion attracted pendulums towards it. Measuring the pendulum’s movement and surveying the mountain, they were able to calculate a rough density of the Earth.

In 1797, however, we finally got the value of G, allowing us to calculate the mass of the Earth. Geologist Reverend John Michell had been working on the problem, but wasn’t able to finish on account of he became dead. Instead, it fell to scientist Henry Cavendish, using Michell’s equipment, to perform the experiment.



Using a relatively simple setup (see above YouTube video from MrLundScience) Cavendish was able to measure the force between two metal spheres separated by a known distance. The gravitational force of the Earth exerted on the smaller ball could be measured by weighing it, and the density of the balls was also known. 

Looking at the ratio between the two forces revealed the mass of the Earth, about 5,974,000,000,000,000,000,000,000 kilograms (13,170,000,000,000,000,000,000,000 pounds), if you’re interested.

An earlier version of this story was published in 2023.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Adobe jumps into e-commerce payments business in challenge to Shopify
  2. FAA to review safety concerns raised by former Blue Origin employee
  3. Artist Uses AI To Imagine What Late Celebs Would Look Like If They Were Still Alive
  4. Being Declared Dead When You’re Still Alive – Why These Very Rare Events Occur

Source Link: The Cavendish Experiment: In 1797, Henry Cavendish Used Two Small Metal Spheres To Weigh The Entire Earth

Filed Under: News

Primary Sidebar

  • The Man Who Fell From Space: These Are The Last Words Of Cosmonaut Vladimir Komarov
  • How Long Can A Bird Can Fly Without Landing?
  • Earliest Evidence Of Making Fire Has Been Discovered, X-Rays Of 3I/ATLAS Reveal Signature Unseen In Other Interstellar Objects, And Much More This Week
  • Could This Weirdly Moving Comet Have Been The Real “Star Of Bethlehem”?
  • How Monogamous Are Humans Vs. Other Mammals? Somewhere Between Beavers And Meerkats, Apparently
  • A 4,900-Year-Old Tree Called Prometheus Was Once The World’s Oldest. Then, A Scientist Cut It Down
  • Descartes Thought The Pineal Gland Was “The Seat Of The Soul” – And Some People Still Do
  • Want To Know What The Last 2 Minutes Before Being Swallowed By A Volcanic Eruption Look Like? Now You Can
  • The Three Norths Are Moving On: A Once-In-A-Lifetime Alignment Shifts This Weekend
  • Spectacular Photo Captures Two Rare Atmospheric Phenomena At The Same Time
  • How America’s Aerospace Defense Came To Track Santa Claus For 70 Years
  • 3200 Phaethon: Parent Body Of Geminids Meteor Shower Is One Of The Strangest Objects We Know Of
  • Does Sleeping On A Problem Actually Help? Yes – It’s Science-Approved
  • Scientists Find A “Unique Group” Of Polar Bears Evolving To Survive The Modern World
  • Politics May Have Just Killed Our Chances To See A Tom Cruise Movie Actually Shot In Space
  • Why Is The Head On Beer Often White, When Beer Itself Isn’t?
  • Fabric Painted With Dye Made From Bacteria Could Protect Astronauts From Radiation On Moon
  • There Used To Be 27 Letters In The English Alphabet, Until One Mysteriously Vanished
  • Why You Need To Stop Chucking That “Liquid Gold” Down Your Kitchen Sink
  • Youngest Mammoth Fossils Ever Found Turn Out To Be Whales… 400 Kilometers From The Coast
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version