• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

The First Molecules In The Universe Reveal Surprises After Being Bombarded With Deuterium

August 6, 2025 by Deborah Bloomfield

A new study has found a few odd surprises about the first molecule in the universe, suggesting our models of the early cosmos may need a little update.

Shortly after the Big Bang the universe was a hot, dense soup of particles. After a few seconds, it became cool enough for the first elements to form, mainly ionized hydrogen and helium. Around 380,000 years later, things had finally cooled enough for these ionized elements to combine with free electrons and form the first neutral atoms in the universe.

This led to a much more exciting period in the cosmos, facilitating the first chemical reactions. The universe was about to get its first molecule: the helium hydride ion (HeH+), composed of a neutral helium atom and an ionized hydrogen nucleus. 

“The first molecules were formed in the radiative association process H+ + He → HeH+ + hν,” the team explains in their paper, “and subsequently other small molecular ions and neutral molecules were formed, among them H2+, H2, H3+, LiH, LiH+, and deuterated variants of those species.”

In this early stage of the universe, HeH+ and H2 (molecular hydrogen or deuterium, the most abundant molecule in the universe) played important roles in cooling protostar clouds enough for them to collapse enough to begin fusion. 

“Simulations have shown that the existence of molecules is crucial at this stage. At temperatures below 10,000 K, the level spacing in all of the light atoms is too large to provide the necessary cooling (through photon emission) for a primordial protostar to collapse. Vibrational and rotational degrees of freedom in molecules, on the other hand, enable radiative cooling down to much lower temperature,” the team explains. “With a substantial dipole moment of 1.66 debye, the HeH+ ion becomes a valid cooling candidate.”

In new experiments, the team attempted to recreate the conditions of the early universe, and test whether HeH+ could provide the cooling needed to form the universe’s first stars. The team bombarded the molecule with deuterium at varying temperatures, simulated by varying the relative speed of the beams of particles. To their surprise, and contrary to previous predictions, the reaction rate did not slow as temperatures significantly decreased.

“Previous theories predicted a significant decrease in the reaction probability at low temperatures, but we were unable to verify this in either the experiment or new theoretical calculations by our colleagues,” Dr Holger Kreckel from the Max-Planck-Institut für Kernphysik (MPIK) explained in a statement. “The reactions of HeH⁺ with neutral hydrogen and deuterium therefore appear to have been far more important for chemistry in the early universe than previously assumed.”

These results could have profound implications for our understanding of the early universe, and may even force a bit of reevaluation. 

“Measurements at the [cryogenic storage ring] have recently shown that the electron recombination rate is very slow for rotationally cold HeH+ ions,” the team concludes. “Combined with the present finding, it is apparent that reactions of HeH+ with atomic hydrogen are more important for primordial molecular abundances than was previously assumed and that reevaluations of helium chemistry in the early Universe – as well as very recent modeling efforts of HeH+ detections in planetary nebulae – may be called for.”

The study is published in Astronomy & Astrophysics.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Epic Games says it is appealing ruling in Apple case
  2. N.M. Rep. Herrell: Democrats demonizing Border Patrol
  3. Families get remains of El Salvador ‘House of Horrors’ victims
  4. A Technologically Advanced Society Is Choosing To Destroy Itself. It’s Both Fascinating And Horrifying To Watch

Source Link: The First Molecules In The Universe Reveal Surprises After Being Bombarded With Deuterium

Filed Under: News

Primary Sidebar

  • US Just Killed NASA’s Mars Sample Return Mission – So What Happens Now?
  • Art Sleuths May Have Recovered Traces Of Da Vinci’s DNA From One Of His Drawings
  • Countries With The Most Narcissists Identified By 45,000-Person Study, And The Results Might Surprise You
  • World’s Oldest Poison Arrows Were Used By Hunters 60,000 Years Ago
  • The Real Reason You Shouldn’t Eat (Most) Raw Cookie Dough
  • Antarctic Scientists Have Just Moved The South Pole – Literally
  • “What We Have Is A Very Good Candidate”: Has The Ancestor Of Homo Sapiens Finally Been Found In Africa?
  • Europe’s Missing Ceratopsian Dinosaurs Have Been Found And They’re Quite Diverse
  • Why Don’t Snorers Wake Themselves Up?
  • Endangered “Northern Native Cat” Captured On Camera For The First Time In 80 Years At Australian Sanctuary
  • Watch 25 Years Of A Supernova Expanding Into Space Squeezed Into This 40-Second NASA Video
  • “Diet Stacking” Trend Could Be Seriously Bad For Your Health
  • Meet The Psychedelic Earth Tiger, A Funky Addition To “10 Species To Watch” In 2026
  • The Weird Mystery Of The “Einstein Desert” In The Hunt For Rogue Planets
  • NASA Astronaut Charles Duke Left A Touching Photograph And Message On The Moon In 1972
  • How Multilingual Are You? This New Language Calculator Lets You Find Out In A Minute
  • Europa’s Seabed Might Be Too Quiet For Life: “The Energy Just Doesn’t Seem To Be There”
  • Amoebae: The Microscopic Health Threat Lurking In Our Water Supplies. Are We Taking Them Seriously?
  • The Last Dogs In Antarctica Were Kicked Out In April 1994 By An International Treaty
  • Interstellar Comet 3I/ATLAS Snapped By NASA’s Europa Mission: “We’re Still Scratching Our Heads About Some Of The Things We’re Seeing”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version