• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

The Human Brain Is So Squishy It Collapses Under Its Own Weight

December 14, 2022 by Deborah Bloomfield

Trying to pick up a human brain that hasn’t been preserved in formaldehyde is a bit like attempting to lift a blob of gelatinous goo, new research has revealed. Using a combination of MRI scans and computational modelling, the study authors calculated the fragility of living participants’ brains, and found that they are very squishy indeed.

While the brains that appear on TV medical dramas tend to look pretty solid, the cerebral apparatus inside our skulls is in fact a droopy dollop of wibbly wobbly tissue – albeit a highly intelligent one. Once removed, however, changes in temperature and the use of preserving agents help to enhance the stiffness of the brain and render it more photogenic.

Advertisement

Speaking to New Scientist, Nicholas Bennion – who co-authored the new study – explained that “if you take a brain which hasn’t been preserved in any way, its stiffness is incredibly low, and it breaks apart very easily. And it really is probably a lot softer than most people realize.”

This lack of rigidity means that small movements of the skull cause the brain to sway, leading to what’s known as “positional brain shift”. For neurosurgeons who require pinpoint accuracy when making incisions, the brain’s tendency to wobble around poses a major challenge.

Bennion and his colleagues set out to understand the mechanics of positional brain shift by calculating the material characteristics of the brain and its surrounding tissue. They scanned the brains of 11 people whilst lying face down and face up, before running the images through a machine learning program.

Advertisement

The resulting model revealed that the brain actually shifts relatively little inside the skull, with the deep brain becoming displaced by roughly one millimeter as the head changes position. The surface of the brain, meanwhile, moves by only half a millimeter, thanks to a “tethering effect” whereby the surrounding tissues hold the brain in place.

The study authors were also able to calculate the bulk modulus of the brain, which provides a measure of how resistant a material is to pressure. Results indicated that the organ can withstand 148 kilopascals of pressure. According to New Scientist, this means that the brain breaks apart ten times easier than polystyrene foam.

To help readers visualize just how pathetically sloppy their thinking organ is, the study authors explain that “the extremely low stiffness of [the] brain leads to collapse under its own weight.”

Advertisement

By providing a detailed model of the sludgy mass inside our heads, the researchers hope to see their work “applied to reduce the impact of positional brain shift in stereotactic neurosurgery.” 

Pretty smart for a bunch of people with heads full of goo.

The study appears in The Journal of the Royal Society Interface.

Advertisement

[H/T: New Scientist]

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Seeking change, Slovak Roma settlement puts faith in Pope visit
  2. Factbox-Who was the third man in Russian nerve agent attack?
  3. After government pledge of ‘best summer ever,’ COVID swamps Alberta hospitals, premier
  4. Tesla hopes to build 5-10,000 vehicles a week at Berlin plant – Musk

Source Link: The Human Brain Is So Squishy It Collapses Under Its Own Weight

Filed Under: News

Primary Sidebar

  • Record-Breaking Marshmallow Planet – It’s A Cold, Peculiar World On A Very Slanted Orbit
  • Distinctive Rocks Might Be Remnants Of Earth Before The Collision That Made The Moon
  • Bright Northern Lights Across America Expected This Week As 3 Coronal Mass Ejections Fly Towards Earth
  • Brain Implant Enables Paralyzed Man To Feel And Use Objects Using Someone Else’s Hands
  • “This Is A Really Big Deal”: Brain Training Significantly Improves Key Neurochemical Levels In World First
  • “Wholly Unexpected”: First-Ever Fossil Paranthropus Hand Raises Questions About Earliest Tool Makers’ Identity
  • For Centuries, Nobody Knew Why Swiss Cheese Has Holes. Then, The Mystery Was Solved.
  • Scientists Studied The Infamous “Chicago Rat Hole” And They Have Some Bad News
  • Massive 166-Million-Year-Old Sauropod Footprints Become The Longest Dinosaur Trackway In Europe
  • Do Spiders Dream? “After Watching Hundreds Of Spiders, There Is No Doubt In My Mind”
  • IFLScience Meets: ESA Astronaut Rosemary Coogan On Astronaut Training And The Future Of Space Exploration
  • What’s So Weird About The Methuselah Star, The Oldest We’ve Found In The Universe?
  • Why Does Red Wine Give Me A Headache? Many Scientists Blame It On The Grape Skins
  • Manta Rays Dive Way Deeper Than We Thought – Up To 1.2 Kilometers – To Explore The Seas
  • Prof Brian Cox Explains What He Finds “Remarkable” About Interstellar Object 3I/ATLAS Story
  • Pioneering “Pregnancy Test” Could Identify Hormones In Skeletons Over 1,000 Years Old
  • The First Neolithic Self-Portrait? Stony Human Face Emerges In 12,000-Year-Old Ruins At Karahan Tepe
  • Women Are Diagnosed With ADHD 5 Years Later Than Men, Even With Worse Symptoms
  • What Is Cryptozoology? We Explore The History And Mystery Of This Controversial Field
  • The Universe’s “Red Sky Paradox” Just Got Darker: Most Stars Might Never Host Observers
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version