• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

The Key To Enhancing Microwave-Powered Magnetic Fields For Quantum Sensors May Be… Grapes

January 3, 2025 by Deborah Bloomfield

A party trick performed using fruit in a microwave oven could lead to more sensitive detectors of microwave radiation, with applications in fields such as dark matter detection, quantum computing, and satellite communication. Adding a pair of grapes either side of a doped diamond might seem an eccentric habit, but it could signal a low-cost path to improved sensors.

Advertisement

In the 1990s a curious craze swept the world of science nerd-dom, revived in later decades through YouTube videos. If a grape is cut almost, but not entirely in half, and placed in a microwave oven, it will often produce plasma, creating an impressive glow and accompanying sparks. Unfortunately, it will sometimes also destroy the microwave oven, but that is a small price to pay to wow and intrigue your friends, right?

Advertisement

Although proposed physics explanations quickly followed the discovery, many were contradictory or easily disproved with further testing. It took more than 20 years before rigorous research settled the question. Macquarie University doctoral student Ali Fawaz and colleagues realized that while the plasma itself may not be useful, the reason it is produced indicates grapes might enhance the capacity of quantum sensors. They’ve now demonstrated the effectiveness of this approach – with the right grapes that is.

“While previous studies looked at the electrical fields causing the plasma effect, we showed that grape pairs can also enhance magnetic fields, which are crucial for quantum sensing applications,” Fawaz said in a statement. 

Fawaz bought the grapes at the supermarket, but the rest of his equipment was a bit fancier. 

“Pure diamonds are colourless, but when certain atoms replace the carbon atoms, they can form so-called ‘defect’ centres with optical properties,” said Dr Sarath Raman Nair. “The nitrogen-vacancy centres in the nanodiamonds we used in this study act like tiny magnets that we can use for quantum sensing.” When a green laser is shone on these nanodiamonds they glow red, with their brightness proportional to the magnetic field.

Advertisement

Amplification of the fields allows the sensors to detect even more subtle effects, which is where the grapes come in.

The grape-induced plasma was explained as a consequence of the grapes acting as a microwave resonator, whose shape stored electric fields inside, producing hotspots in which plasma forms. Fawaz suspected the accompanying magnetic fields would be useful where microwave radiation is used to trigger a field for the nanodiamonds to detect. 

“We found the magnetic field of the microwave radiation becomes twice as strong when we add the grapes,” Fawaz said.

There is a romantic appeal to the idea that certain grape varieties, with just the right sugar concentrations or flavor molecules, would work best, leading scientists to scour vineyards for the perfect amplifier. We’re sorry to burst the bubble of anyone dreaming of a funded trip to a winegrowing region, but Fawaz says this won’t fly.

Advertisement

“The reason this works is because grapes are primarily made of water,” Fawaz told IFLScience. “It has a high refractive index, which allows the grapes to behave as resonators. The waves bounce around inside the grapes because of a jump in permittivity between the inside and the air outside.”

Sugars and any other impurities “contribute to absorption” Fawaz added, and therefore decrease the effect rather than enhancing it. Bags of pure water held together by some sort of membrane would probably do better, but are not so easily available. 

The main grape criteria is size and shape. A length of 27 millimeters (1.06 inches) is perfect for the microwaves Fawaz used. A width of 17 millimeters (0.7 inches) proved appropriate, but most important of all was for the two grapes’ placed either side of the detector to match in size. Other fruits might also work if they’re suitably sized and enclosed, but it’s unlikely they would improve on grapes by much, if at all.

“Water is actually better than sapphire at concentrating microwave energy, but it’s also less stable and loses more energy in the process. That’s our key challenge to solve,” Fawaz said in the press release. 

Advertisement

Although the craze that started this used a cut grape, that isn’t necessary, except perhaps to make the plasma more visible. For Fawaz’s purposes it would just ensure the grape dried out faster.

Fawaz explained to IFLScience the reasons microwave sensors are in demand is that, “In most quantum systems we manipulate the spins using microwave fields.” The goal is to cause particles to interact coherently, which requires coupling them to fields. The state of such systems is sensitive to magnetic fields, temperature and pressure and can therefore be used as sensors for all of these.

The sparks that first drew attention to the phenomenon are charges jumping between metallic ions in the grapes’ plasma hotspots. Some ovens have been destroyed when the sparks got out of hand.

Fawaz told IFLScience his study was done using microwave sources far less powerful than a household oven, so damage was not a concern. He cannot confirm rumors the demonstration can be run safely if a glass of water in placed in the microwave at the same time, absorbing enough of the microwaves to protect the oven.

Advertisement

The study is published open access in Physical Review Applied.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  2. Why Is The Euphrates River Drying Up And What Does It Mean?
  3. Enormous Next-Generation Particle-Smasher Proposed To Hunt The Dark Universe
  4. How We Know Homeopathy Isn’t Real Science

Source Link: The Key To Enhancing Microwave-Powered Magnetic Fields For Quantum Sensors May Be… Grapes

Filed Under: News

Primary Sidebar

  • Scheduling Cancer Immunotherapy In The Morning May Lower Your Risk Of Death By As Much As 63 Percent
  • Spacetime Vortices Spotted For The First Time As Black Hole Kills A Star
  • The Never-Before-Seen First Stars In The Universe May Have Finally Been Spotted
  • There’s Finally An Explanation For The Longest Known Gamma Ray Burst’s Appearance – But A Key Mystery Remains
  • The Earliest Evidence Of Making Fire Has Been Discovered, Dating To 400,000 Years Ago
  • First X-Ray Image Of Comet 3I/ATLAS Reveals Signature Unseen In Other Interstellar Objects
  • The Surprisingly Scientific Events That Occurred On Christmas Day
  • Humans Are The Smartest And Dumbest Animal Of All Time, Argues Biologist
  • The Final Secret Of Self-Healing Roman Concrete May Have Been Cracked
  • People Are Confused By The Natural Markings On Watermelons That Look Like “Crop Circles”
  • Pica: The Disorder That Makes People Crave And Eat The Inedible
  • Project Alpha: In 1979, Magicians Infiltrated A Washington Laboratory To Test Scientific Rigor In Parapsychology
  • We May Finally Know What Caused The “Hobbit” Humans To Go Extinct
  • Radical New Treatment Clears Disease In 64 Percent Of Patients With Incurable Cancer
  • People Are Just Now Realizing That The Earth Has A Tail, Stretching At Least 2 Million Kilometers
  • Where On Earth Does Cinnamon Come From?
  • Born With No Feet, Andy The Goose Got Second-Chance Sneakers – But Murder Was Afoot
  • Where Does Pepper Come From?
  • 30-Cargo-300: Major Report Outlines The Priorities For A NASA-Led Human Mission To Mars
  • Like Cheesy Vomit: Why Does American Chocolate Taste So Weird To Europeans?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version