• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

The World’s First Environmental Clean-Up Happened 400 Million Years Ago

February 3, 2023 by Deborah Bloomfield

The ConversationOne of the biggest environmental challenges today is to treat land that is contaminated by toxic elements from industrial activity, elements like arsenic, antimony and tungsten.

But these same elements can be brought to the Earth’s surface by natural processes such as the bubbling up of hot springs. So it is valuable to understand how they were dealt with by the environment before humans came along. A site in Aberdeenshire in Scotland which is famous for early fossil life preserved by hot springs, shows us how it could have happened.

Advertisement
Rhynia stem
A cross-section of a stem preserved as a silica petrifaction, detailing its cellular structure, found at Rhynie, Aberdeenshire. Image credit: Plantsurfer via Wikiwand, CC BY-SA 2.0

Some of the world’s most well preserved fossilised plants are found in Rhynie, just west of Aberdeen, in deposits thought to have come from the world’s oldest land ecosystem.

Exquisitely detailed plants – as well as spiders, insects, fungi and other life – were preserved there by hot springs about 410 million years ago. These are some of the earliest fossilised plants known, so are important in what they can tell us about plant evolution.

But those hot springs also introduced elements that would have been toxic to most forms of life. Our latest research shows how minerals deposited among the plants extracted the toxic metals from the spring water and limited their impact on the environment.

Minerals and toxic metals

The plants at Rhynie were encased in the mineral silica, which deposits around hot springs. At tourist spots like Iceland, New Zealand and Yellowstone National Park in the US, bacteria in the water are involved in producing these silica deposits, and this would have been the same at Rhynie.

Advertisement

As well as silica, the fossils contain certain minerals including pyrite (iron sulphide, so-called fool’s gold), manganese oxides and titanium oxides. It’s these minerals, produced by the bacteria and other lifeforms, that would have soaked up the toxic metals.

Pyrite, formed by the bacteria, soaked up arsenic from the spring water. Manganese oxides, commonly deposited by fungi, also absorbed arsenic. Titanium oxides, formed particularly around decomposing plant remains, absorbed tungsten and antimony.

So between them, the minerals formed by biological activity accounted for the main sources of toxicity. The evidence from Rhynie shows how natural processes have helped clean the environment since life first colonised the land.

The magic of mushrooms

Our solutions to man-made environmental problems, such as contamination from industry and mining, typically include a range of chemical treatments. But an exciting “natural” approach is the technique of mycoremediation, where fungi concentrate and store contaminating elements in their substance.

Advertisement

Fungi can be very resilient, and adapt rapidly to substances we regard as toxic. One strategy is to harvest fungi that live on mining or industrial waste and which are predisposed to cope with it, then use the fungi to clean up waste on other problem sites. In this way, fungi can be used to recover land contaminated by harmful metals.


Biologist Merlin Sheldrake, in his award-winning 2020 book Entangled Life, argues: “Fungi are some of the best-qualified organisms for environmental remediation … fine-tuned over a billion years of evolution.”

Evolution is a key word here. The ecosystem (plants, animals and their habitat, including minerals) does not “intend” to clean up toxic chemicals as humans do. However, life is more likely to thrive and reproduce in ecosystems that strip out harmful substances. Just as particular fungi can be selected to help deal with contaminated land, evolution favoured the species that adapted to environmental changes in the geological past, as implied at Rhynie.

Remaining questions

The deposits at this special geological site were formed by hot springs, whose waters preserved the plant cells. But because the hot springs that formed the Rhynie deposit were rich in arsenic, antimony and other trace elements, there is uncertainty about how representative these fossils may be of early plant communities.

Advertisement

Scientists might argue that the plants found at Rhynie could be an adaptation to an environment that was chemically unusual. There is no clear answer to whether this was so, but our observations do suggest that the ecosystem was able to respond to the water chemistry, so the existence of these plants was not necessarily abnormal.

Visitors to hot springs in New Zealand and Yellowstone today can see orange and yellow crusts containing the harmful arsenic, antimony and so on, but also precious metals like gold and silver, so the springs attract commercial interest.

Hot springs worldwide also contain an element that was pretty much ignored until recently: lithium. The spring waters provide a renewable supply of this element which is currently fundamental to rechargeable batteries – especially in electric vehicles, which are essential in the quest to achieve carbon emission targets. So hot springs may have more than one role in helping clean up the environment.

John Parnell, Professor of Geology and Petroleum Geology, University of Aberdeen

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Merkel’s conservatives slump to record low before German vote
  2. American Airlines, Microsoft join Gates-backed program to boost clean energy
  3. S&P revises Oman outlook to positive on higher oil prices, reforms
  4. The Moon Will Take A Bite Out Of The Sun Next Week And You Can Watch

Source Link: The World’s First Environmental Clean-Up Happened 400 Million Years Ago

Filed Under: News

Primary Sidebar

  • A New Way Of Looking At Einstein’s Equations Could Reveal What Happened Before The Big Bang
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations, NASA Reveals Comet 3I/ATLAS Images From 8 Missions, And Much More This Week
  • The Latest Internet Debate: Is It More Efficient To Walk Around On Massive Stilts?
  • The Trump Administration Wants To Change The Endangered Species Act – Here’s What To Know
  • That Iconic Lion Roar? Turns Out, They Have A Whole Other One That We Never Knew About
  • What Are Gravity Assists And Why Do Spacecraft Use Them So Much?
  • In 2026, Unique Mission Will Try To Save A NASA Telescope Set To Uncontrollably Crash To Earth
  • Blue Origin Just Revealed Its Latest New Glenn Rocket And It’s As Tall As SpaceX’s Starship
  • What Exactly Is The “Man In The Moon”?
  • 45,000 Years Ago, These Neanderthals Cannibalized Women And Children From A Rival Group
  • “Parasocial” Announced As Word Of The Year 2025 – Does It Describe You? And Is It Even Healthy?
  • Why Do Crocodiles Not Eat Capybaras?
  • Not An Artist Impression – JWST’s Latest Image Both Wows And Solves Mystery Of Aging Star System
  • “We Were Genuinely Astonished”: Moss Spores Survive 9 Months In Space Before Successfully Reproducing Back On Earth
  • The US’s Surprisingly Recent Plan To Nuke The Moon In Search Of “Negative Mass”
  • 14,400-Year-Old Paw Prints Are World’s Oldest Evidence Of Humans Living Alongside Domesticated Dogs
  • The Tribe That Has Lived Deep Within The Grand Canyon For Over 1,000 Years
  • Finger Monkeys: The Smallest Monkeys In The World Are Tiny, Chatty, And Adorable
  • Atmospheric River Brings North America’s Driest Place 25 Percent Of Its Yearly Rainfall In A Single Day
  • These Extinct Ice Age Giant Ground Sloths Were Fans Of “Cannonball Fruit”, Something We Still Eat Today
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version