• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

There Could Be Life On Titan, But Probably Not Much

April 9, 2025 by Deborah Bloomfield

Saturn’s moon Titan has many of the ingredients we think are necessary for life. However, a new study argues the separations between them present a drastic obstacle. The amount of life for the whole moon that could depend on the most plausible reaction would fit in the luggage allowance of a passenger flight.

Titan has the most Earth-like atmosphere in the Solar System, closer to ours than Venus’s acidic hell or the near non-existence of Mars’s. Despite the extreme cold, high hopes were held for life there before the Voyager probes went past. Although those missions revealed the only world besides Earth with liquids at the surface (if you don’t count Io’s lava) and lakes and rain, those are made of hydrocarbons and lack essential features that allow water to support life.

Not everyone gave up on Titan, however, particularly after evidence emerged of an internal ocean, probably made up of water, not hydrocarbons. This would in some ways resemble those of Europa and Enceladus, but some astrobiologists have proposed it would be an even better prospect for biology. That’s because some of the organic material at the surface might reach the ocean. 

However, a team led by University of Arizona PhD student Antonin Affholder have published what they consider a reality check for the optimists. “In our study, we focus on what makes Titan unique when compared to other icy moon; its plentiful organic content,” said Affholder in a statement. 

“There has been this sense that because Titan has such abundant organics, there is no shortage of food sources that could sustain life,” Affholder added. However, organic just means containing carbon, so many of those molecules would not be food for organisms on Earth, and quite likely on Titan either. Moreover, we don’t know how much exchange there is between the ocean and the surface; Affholder and co-authors think it may not be much.

Artist's impression of the Dragonfly mission flying through Titan's atmosphere. The mission, set to launch in 2028 could give us a more precise idea of how common glycine is there.

Artist’s impression of the Dragonfly mission flying through Titan’s atmosphere. The mission, set to launch in 2028, could give us a more precise idea of how common glycine is there.

Image Credit: NASA/Johns Hopkins APL/Steve Gribben

Life is so complex that modeling all its processes would be an enormous task, so the team focused on fermentation, which gives us bread and beer. “Fermentation probably evolved early in the history of Earth’s life, and does not require us to open any door into unknown or speculative mechanisms that may or may not have happened on Titan,” Affholder said.

The team further narrowed their search to consider fermenters in Titan’s subsurface ocean feeding on glycine. Glycine was chosen because it is the simplest amino acid, and is thought to be made from common molecules in Titan’s atmosphere. Moreover, its fermentation does not rely on the presence of oxidants needed by some other reactions life forms depend on. That’s important, because these oxidants are likely to be rare in an ocean like Titan’s.

“We know that glycine was relatively abundant in any sort of primordial matter in the Solar System,” Affholder said. “When you look at asteroids, comets, the clouds of particles and gas from which stars and planets like our Solar System form, we find glycine or its precursors in pretty much all those places.” Organisms that live by fermenting glycine survive in places on Earth most other life forms can’t.

However, any organisms in Titan’s oceans dependent on glycine from above would be little Oliver Twist’s desperately asking for more. That’s because Titan’s icy shell is so thick – possibly 300 kilometers (180 miles). This isn’t like Enceladus with crevasses suspected of joining the ocean to the surface. 

The same team showed in a previous paper that temporary connections between surface and ocean probably exist, because when asteroids strike Titan they will locally melt the ice, creating a pool of liquid water that will sink. If the pool is large enough, the water can reach the ocean before it freezes, carrying organic material with it.

However, Titan’s atmosphere means that, just as on Earth, most incoming objects burn up before they hit the surface and even those that don’t lose enough speed to make smaller pools. Consequently, pools big enough to carry all the way to the ocean are probably very rare.

“Our new study shows that this supply may only be sufficient to sustain a very small population of microbes weighing a total of only a few kilograms at most – equivalent to the mass of a small dog,” Affholder said. “Such a tiny biosphere would average less than one cell per liter of water over Titan’s entire vast ocean.”

For biology to persist under such conditions would probably require the limited glycine supply to be very concentrated. Quite how life could start is a topic the team don’t tackle.

This work doesn’t rule out the possibility of life on Titan feeding on nutrients from a different source, but in that case, the giant moon loses its advantage over counterparts with their own internal oceans. Since these are usually much closer to the surface, and therefore easier to reach, they look like better prospects to hunt for life.

The study is open access in The Planetary Science Journal.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis – U.S. Open order of play on Saturday
  2. Russia to host first royal wedding in more than a century
  3. Can You Cry Underwater?
  4. Atlas V Carrying Final National Security Mission Launches Today – Watch Here

Source Link: There Could Be Life On Titan, But Probably Not Much

Filed Under: News

Primary Sidebar

  • People Are Only Just Learning What The World’s Most Expensive Cheese Is Made Of
  • The Physics Behind Iron: Why It’s The Most Stable Element
  • What Is The Reason Some People Keep Waking Up At 3am Every Night?
  • Michigan Bear Finally Free After 2 Years With Plastic Lid Stuck Around Its Neck
  • Pangolins, The World’s Most Trafficked Mammal, May Soon Get Federal Protection In The US
  • Sharks Have No Bones, So How Do They Get So Big?
  • 2025 Is Shaping Up To Be A Whirlwind Year For Tornadoes In The US
  • Unexpected Nova Just Appeared In The Night Sky – And You Can See It With The Naked Eye
  • Watch As Maori Octopus Decides Eating A Ray Is A Good Idea
  • There Is Life Hiding In The Earth’s Deep Biosphere, But Not As You Know It
  • Two Sandhill Cranes Have Adopted A Canada Gosling, And It’s Ridiculously Adorable
  • Hybrid Pythons Are Taking Over The Florida Everglades With “Hybrid Vigor”
  • Mysterious, Powerful Radio Pulse Traced Back To NASA Satellite That’s Been Dead Since 1967
  • This Is The Best (And Worst) Sleep Position
  • Artificial Eclipse, Dancing Dinosaurs, And 50 Years Of “JAWS”
  • The Longest-Reigning Monarch In History Is Someone You’ve Never Heard Of
  • World’s First Microfiber Recycling Center Plans To Combat Ocean Pollution At Its Source – Our Homes
  • Dancing Dinosaurs May Have Used Site In Colorado As “Largest Lekking Arena In The World”
  • World’s Largest Digital Camera To Reveal Revolutionary First Images On Monday – And You Can Watch Live
  • Common Brain Parasite Infecting Up To 30 Percent Of Americans Disrupts Neuron Communication
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version