• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

There’s A Hidden Code In Your DNA And Scientists Have Just Identified It

July 25, 2025 by Deborah Bloomfield

A portion of our genome that was once dismissed as being “junk” may actually play an important role in regulating gene expression, new research suggests. According to the work of an international team of scientists, the “junk” has actually evolved to influence how genes are turned on and off, especially during early human development.

The story of how this DNA became relegated to being considered pointless occurred at the start of the century, but before we discuss that, we need to know what we’re dealing with. During the 1940s, the cytogeneticist Barbara McClintock identified what are called transposable elements (TEs), or “jumping genes”, in corn. Essentially, these are DNA sequences that can move to different locations within the genome. At first, scientists were skeptical about this discovery, but decades later, they agreed that these genes don’t just “jump”; they also appear in almost every organism.

Later, TEs were identified as making up around 45 percent of the human genome. It seemed they had managed to proliferate using a simple repetitive process over millions of years.

This repetitive process meant that the sequences appear to be nearly identical, and so, they were dismissed as a genetic leftover from ancient and now extinct viruses. Today, we know some TEs act like “genetic switches”, controlling the activity of nearby genes in certain cell types.

But the repetitive and near identical nature of these sequences has made them tricky to study, especially younger TE families, such as MER11. These TEs have been poorly categorized in current genomic databases, which has contributed to our not knowing what they do.

To address this, researchers developed a new way to classify TEs that does not rely on standard annotation tools, instead grouping MER11 sequences based on their evolutionary relationships and how well they’ve been conserved in primate genomes. With this, the scientists were able to divide MER11A/B/C into four distinct families – MER11_G1 through to MER11_G4. This categorization also ranged from oldest to youngest in terms of when they first popped up in the primate genome evolutionary history.

What did this categorization reveal? Previously unknown patterns of gene regulation potential that are hidden within the sequences. The researchers then compared the new MER11 subfamilies to various epigenetic markers – chemical tags on DNA and associated proteins that impact gene activity. This demonstrated that this new classification is more aligned with actual regulatory function than other methods have shown.

Next, the researchers tested the MER11 sequences with a technique known as lentiMPRA (lentiviral massively parallel reporter assay). This method can test thousands of DNA sequences at the same time to assess how much each one boosts gene activity. After analyzing nearly 7,000 MER11 sequences from primates, including humans, and measuring their effects in human stem cells and early-stage neural cells, the team found that MER11_G4 was particularly good at activating gene expression.

The team also found that this sequence had a distinct set of regulatory “motifs”, which are short stretches of DNA that act as docking ports for transcription factors – the proteins that control when genes are expressed or “turned on”. These motifs have a significant influence on how genes respond to developmental signals or environmental cues.

Interestingly, it seems the MER11_G4 sequences have accumulated slightly different changes across time in humans, chimpanzees, and macaques. In the former two, some sequences had mutations that could increase their regulatory potential in human stem cells. The research also found that MER11_G4 binds to a distinct set of transcription factors, suggesting that this group gained alternative regulatory functions through sequence changes and may contribute to speciation – the evolutionary process that leads to distinct species.

The study is published in Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Djokovic feels ‘relief’ after bid for calendar Grand Slam falls short
  2. Was Jesus A Hallucinogenic Mushroom? One Scholar Certainly Thought So
  3. Lacking Company, A Dolphin In The Baltic Is Talking To Himself
  4. 99-Million-Year-Old Amber Fossils Mark The Oldest Known Example Of “Zombie Fungus” Infection

Source Link: There's A Hidden Code In Your DNA And Scientists Have Just Identified It

Filed Under: News

Primary Sidebar

  • Are There Body Parts You Can Live Without? Find Out More In Issue 37 Of CURIOUS – Out Now
  • New Study Unearths Humanity’s “Hidden” Crossings Out Of Africa
  • Trichonephila Clavipes: The Spider That Spins “Golden” Silk
  • The Southern Delta Aquariids And Alpha Capricornids Meteor Showers Will Dazzle The Skies Together Soon
  • Virus Found In Black-Eyed Pea Plants Could Be Used To Treat Cancer
  • Many People Have No Idea Where Oil Actually Comes From. It’s Not Dinosaurs
  • “World’s Rarest Elephant”: Meet Motty, The Only Known Elephant Hybrid
  • Missing 40 Percent Of Matter In The Universe Finally Discovered, Could We Be On Track For A Universal Cancer Vaccine, And Much More This Week
  • Solar Power Producing Heliostats Could Get A “Night Job” Finding Asteroids
  • COVID-19 Can Lead To Build Up Of Alzheimer’s-Linked Protein Clumps In Eyes And Brain
  • The Wild Life Of Snowflake, The Only Albino Gorilla Ever Known
  • Stunning Drone Footage Reveals Largest Turtle Nesting Site In The World, Containing 41,000 Females
  • New “Different Form” Of Type 1 Diabetes Found In Sub-Saharan African And Black American Patients
  • Neanderthals May Have Feasted On Maggots, Which They Harvested From Rotting Flesh
  • Common Cannabis Substitute May Be Far More Psychoactive Than Previously Thought
  • This Is The Most Bizarre International Border In The World
  • Earth Will Not Fall Into Darkness Next Week – But There Is An “Eclipse Of The Century” In 2027
  • 850,000-Year-Old Remains Suggest Prehistoric Child Was Decapitated And Eaten By Its Own Kind
  • How To Watch The ISS As It Crosses The US Night Sky In The Next Few Days
  • “Robo-Bunnies” Are Florida’s Newest Weapon Against Python Invaders
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version