• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

These Tiny, Wound-Healing Robots Start Life As Just 1 Human Cell

December 1, 2023 by Deborah Bloomfield

Regenerative medicine might just have had a new tool added to its arsenal: Scientists have created tiny biological robots out of living human cells. Though they may be small, the self-assembling bots are mighty, with a study demonstrating their potential for healing and treating disease. 

The team had already proven their biological robotics chops back in 2020 with the creation of Xenobots, made from frog embryonic cells. They even managed to design Xenobots so that they could reproduce in a way that no living animal or plant does, something that had never been seen before. 

Advertisement

The researchers weren’t sure whether the incredible capabilities of the Xenobots were in some way down to their amphibious origins, so they wanted to find out if biobots could also be created from the cells of other organisms. And why not begin with humans?

The starting point for the newest robots, called anthrobots, is a single adult human cell taken from the trachea (windpipe). These types of cells are covered in tiny hair-like structures called cilia which help keep tiny particles out of our lungs. By manipulating their growth conditions in the lab, the team was able to encourage the cells to replicate into multicellular organoids with the cilia facing outwards.

Now, with their coating of oar-like cilia beating away, the cells would be able to move. 

colorize image of a circular Anthrobot showing the coating of cilia on its surface

In this colorized image, you can see the furry coating of cilia on the Anthrobot’s surface.

Image credit: Gizem Gumuskaya, Tufts University

A few different variants of the anthrobots emerged, with slightly different shapes and ranging in size between 30 and 500 micrometers. Depending on the arrangement of their cilia, they moved differently – wiggling around, traveling in straight lines, or moving in circles. They can survive in the lab for up to 60 days before naturally degrading.

Advertisement

This ability to spontaneously form their own shape is one of several advantages of the anthrobots.

“Unlike Xenobots, they don’t require tweezers or scalpels to give them shape, and we can use adult cells – even cells from elderly patients – instead of embryonic cells,” explained their creator, PhD student Gizem Gumuskaya, in a statement. “It’s fully scalable – we can produce swarms of these bots in parallel, which is a good start for developing a therapeutic tool.”

One of these potential therapeutic applications is in healing. The team observed that when a cluster of anthrobots (called a “superbot”) was added to neurons grown in the lab, which had been damaged by scratching the layer of cells, the miniature marvels encouraged new cell growth to fill in the gap.



Advertisement

And remember, the anthrobots are made of tracheal cells, not neurons. The scientists were surprised at their capabilities, which open up a whole host of potential applications in neurological diseases, tissue damage, and drug delivery. The fact that the cells naturally grow into such a range of structures, and that you could theoretically harvest a patient’s own cells for the process, thus limiting the chances of adverse immune reactions, means that we’re probably only scratching the surface of the possibilities.

“Two important differences from inanimate bricks are that cells can communicate with each other and create these structures dynamically, and each cell is programmed with many functions, like movement, secretion of molecules, detection of signals, and more,” Gumuskaya said. “We are just figuring out how to combine these elements to create new biological body plans and functions – different than those found in nature.”

“The cellular assemblies we construct in the lab can have capabilities that go beyond what they do in the body,” added senior author Michael Levin, director of the Allen Discovery Center at Tufts University. 

“It is fascinating and completely unexpected that normal patient tracheal cells, without modifying their DNA, can move on their own and encourage neuron growth across a region of damage. We’re now looking at how the healing mechanism works, and asking what else these constructs can do.”

Advertisement

The study is published in the journal Advanced Science.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. China Evergrande shares slide 6% in early trade
  2. French watchdog chief calls for ban on ‘payment for order flow’ in EU stock market
  3. Robots Are Performing Hindu Rituals – Some Devotees Fear They’ll Replace Worshippers
  4. Possible Hints Of Life Found On Distant Planet – How Excited Should We Be?

Source Link: These Tiny, Wound-Healing Robots Start Life As Just 1 Human Cell

Filed Under: News

Primary Sidebar

  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version