• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

This Is Why You Can Live In Hiroshima And Nagasaki But Not Chernobyl

June 26, 2023 by Deborah Bloomfield

Three of the most cataclysmic nuclear events of the 20th century took place in three cities, two in Japan and one in Ukraine. We are probably all familiar with what happened in each case, but what isn’t so clear is why people have been able to live and thrive in Hiroshima and Nagasaki but not in Chernobyl. 

What happened? 

The stories of these different disasters are well known today but worth going over. In early August 1945, at the end of the Second World War, the United States detonated two nuclear bombs (named Little Boy and Fat Man, respectively) over the Japanese cities of Hiroshima and Nagasaki, three days apart. In total, the aerial assault resulted in somewhere between 129,000 and 226,000 deaths, most of which were civilians. Even those who rushed to the city to help victims after the explosions quickly succumbed to the radiation. 

Advertisement

In the years that followed, many of the survivors reported cases of leukemia, as well as other cancers and hideous conditions. Pregnant women exposed to the blasts went on to experience significantly higher rates of miscarriages and infant mortality. Those children who did survive birth were more likely to have developmental disabilities, intellectual impairment, stunted growth, and an increased risk of developing cancer. 

The bombings of Hiroshima and Nagasaki still represent the only use of nuclear weapons against an enemy population. In contrast, the Chernobyl disaster was an accident that occurred on the night of April 26, 1986, when a flawed reactor exploded, releasing dangerous radionuclides into the atmosphere. The force of the explosion sent contaminated matter over large parts of the Soviet Union (modern Belarus, Ukraine, and Russia). At the time of the explosion, two people were killed and around 28 others died within a week, but a subsequent 600,000 personnel involved in the clean-up operations (called “liquidators”) were subsequently exposed to dangerous levels of radiation.

The Soviet government covered up the incident for some time and, due to the murky nature of reporting on the incident, it has been hard to establish how many deaths it actually caused. The UN estimates that only 50 people died as a direct result of the disaster, but in 2005 it was predicted that a total of 4,000 people may yet die from the long-term effects of radiation exposure. 

Advertisement

So we have two sets of incidents – two large explosions that resulted in high casualties in a comparatively short period of time and a smaller explosion that has had fewer direct deaths but a significantly larger environmental impact. So what’s going on here?

Explosions and fissile materials

The main difference between these cases is the nature of the disasters themselves – or, more specifically, how a nuclear explosion can differ from a nuclear reactor explosion. The bombs dropped on Hiroshima and Nagasaki were detonated far above ground level. This maximized the explosions’ yields, causing greater immediate damage, but it also reduced the levels of radiation. In contrast, the explosion at Chernobyl, which was much smaller and occurred at ground-level, threw over 400 times as much radioactive material into the atmosphere as well as leaving large chunks of nuclear fallout debris (parts of the reactor contaminated by radiation) in the local area. 

Then there is the quantity of fissile material used in each location. Most nuclear weapons and nuclear reactors run off enriched uranium containing high concentrations of the isotope uranium-235 (U-235). This particular isotope forms the fuel for reactors and is the stuff that makes a bomb go boom. This is achieved through fission, whereby neutrons are used to split U-235 atoms, which liberates large amounts of energy. When a U-235 atom splits, it also releases more neutrons. Those neutrons then split more U-235 atoms releasing more energy, and so on in what is a nuclear chain reaction. 

Advertisement

In a nuclear weapon, the aim is to maximize the amount of energy released by consuming as much of the uranium as quickly as possible. This reaction does not require that much uranium to achieve a significant explosion – 1 kilogram (2.2 pounds) of U-235 can liberate energy equivalent to about 17 kilotons of TNT. Little Boy, the bomb dropped on Hiroshima, held 64 kilograms (141 pounds) of uranium and its purity (the amount of U-235 it contained) was only about 80 percent.    

In contrast, a nuclear reactor uses control rods to absorb additional neutrons so that the fission chain reaction can be sustained at lower intensity and for far longer. As such, a reactor will require significantly larger amounts of enriched uranium to fuel it – Chernobyl contained about 180 tons of fuel. 

Nuclear reactors also generate high levels of nuclear by-products that are extremely radioactive. This nuclear waste is generally classified as low-level (LLW), intermediate-level (ILW), or high-level (HLW) depending on its contents. Although there are various radioactive substances in nuclear waste, the most harmful are caesium, iodine, and graphite (which is used as a moderator in some nuclear reactors like Chernobyl). 

Typically, when nuclear fuel is spent – no longer generating energy – it is replaced and stored at the reactor until it can be safely disposed of or recycled for further use. However, in the case of Chernobyl, the explosion released this material into the atmosphere and the surrounding environment. These by-products have long half-lives, which means they remain harmful to humans for far longer. 

Advertisement

It is these factors that make Chernobyl an inhospitable place today. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Fearless teenagers Fernandez, Raducanu a win away from glory
  2. Nomura cuts China 2021 growth forecast to 7.7% from 8.2%
  3. U.S. Justice Dept antitrust nominee says he is eager to tackle more than just Big Tech
  4. Glorious New Images Of Jupiter’s Moon Io Are The Closest Yet From Juno

Source Link: This Is Why You Can Live In Hiroshima And Nagasaki But Not Chernobyl

Filed Under: News

Primary Sidebar

  • Why Do Crocodiles Not Eat Capybaras?
  • Not An Artist Impression – JWST’s Latest Image Both Wows And Solves Mystery Of Aging Star System
  • “We Were Genuinely Astonished”: Moss Spores Survive 9 Months In Space Before Successfully Reproducing Back On Earth
  • The US’s Surprisingly Recent Plan To Nuke The Moon In Search Of “Negative Mass”
  • 14,400-Year-Old Paw Prints Are World’s Oldest Evidence Of Humans Living Alongside Domesticated Dogs
  • The Tribe That Has Lived Deep Within The Grand Canyon For Over 1,000 Years
  • Finger Monkeys: The Smallest Monkeys In The World Are Tiny, Chatty, And Adorable
  • Atmospheric River Brings North America’s Driest Place 25 Percent Of Its Yearly Rainfall In A Single Day
  • These Extinct Ice Age Giant Ground Sloths Were Fans Of “Cannonball Fruit”, Something We Still Eat Today
  • Last Year’s Global Aurora-Sparking “Superstorm” Squashed Earth’s Plasmasphere To A Fifth Its Usual Size
  • Theia – The Giant Impactor That Formed The Moon – Assembled Closer To The Sun Than Earth Is Now
  • Testosterone And Body Odor May Quietly Influence How People Perceive The Social Status Of Men
  • There Have Been At Least 50 Incidents Of Spiders Capturing And Eating Bats (That We Know Of)
  • A “Very Old, Undisturbed Structure” May Have Been Discovered Beyond The Orbit Of Neptune, 43 AU From The Sun
  • NASA Finally Reveals Comet 3I/ATLAS Images From 8 Missions, Including First From Another Planet’s Surface
  • 360 Million Years Ago, Cleveland Was Home To A Giant Predatory Fish Unlike Anything Alive Today
  • Under RFK Jr, CDC Turns Against Scientific Consensus On Autism And Vaccines, Incorrectly Claiming Lack Of Evidence
  • Megalodon VS T. Rex: Who Had The Biggest Teeth?
  • The 100 Riskiest Decisions You’ll Likely Ever Make
  • Funky-Nosed “Pinocchio” Chameleons Get A Boost As They Turn Out To Be Multiple Species
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version