• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

“Universe Breakers”: Unexplainable Bright Red Dots Found In The Early Universe

July 23, 2024 by Deborah Bloomfield

The JWST has allowed astronomers to peer back further into the past than any other infrared or optical telescope, seeing infrared light that was emitted by distant galaxies just 300 million years after the Big Bang.

Advertisement

With the infrared telescope, we were hoping to learn more about the formation of galaxies, as well as clear up mysteries about how supermassive black holes became so large. But we have been thrown a few surprises as we look further back into the past.

One such surprise is the tiny, bright red dots of light that appear to be dotted throughout the early universe, around 600-800 million years after its birth. When they were first detected and analyzed, astronomers believed they could be massive galaxies. But this was at odds with how cosmological models expect galaxies to form – as small clouds of dust and stars that grow larger over long periods of time.

“The revelation that massive galaxy formation began extremely early in the history of the universe upends what many of us had thought was settled science,” Joel Leja, assistant professor of astronomy and astrophysics at Penn State, said in a statement following early observations. “We’ve been informally calling these objects ‘universe breakers’ – and they have been living up to their name so far.”

Of course, seeing objects that could upend our models of galaxy formation, the team wanted to be sure of what they were seeing, and aimed to take spectrum images of these galaxies to get a better idea of the distance of the galaxies, what the galaxies are made of, and how massive they truly are. Following that analysis, they have found these objects are indeed pretty weird, and in several ways.

First off, despite being only 600-800 million years old, the galaxies appear to be packed with ancient stars, aged hundreds of millions of years old. As well as the oddity of their formation, this means the team was looking at the earliest signatures of old starlight ever found.

Advertisement

“These early galaxies would be so dense with stars – stars that must have formed in a way we’ve never seen, under conditions we would never expect during a period in which we’d never expect to see them,” Leja said in a statement following the latest work. “And for whatever reason, the universe stopped making objects like these after just a couple of billion years. They are unique to the early universe.”

But there are more mysteries to solve. The team estimates that the galaxies have surprisingly large supermassive black holes at their centers, between 100 and 1,000 times larger than Sagittarius A* at the center of the Milky Way. That’s far too big for the galaxy surrounding it. If the galaxy were compressed to the size of the Milky Way, the team says that the nearest star would be just outside our Solar System, and the supermassive black hole at the center would be just 26 light-years away from Earth, visible as a huge pillar of light.

“Normally supermassive black holes are paired with galaxies,” Leja added. “They grow up together and go through all their major life experiences together. But here, we have a fully formed adult black hole living inside of what should be a baby galaxy. That doesn’t really make sense, because these things should grow together, or at least that’s what we thought.”



Advertisement

Supermassive black holes we see in the nearer (more recent) universe are, as the name would suggest, pretty big. Cosmologists would like to know how these supermassive black holes, which are found at the center of most (but not all) galaxies, came to be such a large size. 

There have been a number of theories, including mergers of black holes, and that the black holes grew through feeding. These early black holes, and others discovered by the JWST, appear to be too large to be explained by these ideas, and much larger than cosmologists had been expecting in comparison to the galaxies surrounding them.

One idea, which is perhaps becoming more favorable in light of recent observations, is “direct collapse” or “heavy seed” black holes. Usually, to get a stellar mass black hole (in the current age of the universe), a star undergoes collapse. With heavy seed black holes the idea is that supermassive black holes would have started out at around 10,000 to 100,000 solar masses, through the direct gravitational collapse of gigantic gas clouds, without an intermediate stellar phase. 

There are a few things that could make this scenario unlikely too. The gas cloud would need to collapse without fragmenting and forming clumps as it does so, though astronomers have suggested that this could be prevented if the cloud is heated by nearby young stars in pre-galactic gas disks, or if the gas cloud was moving at supersonic speeds in “flows” in the early universe, allowing it to grow for longer, until the gravity is sufficient to start the cloud’s collapse into a seed black hole.

Advertisement

It is currently difficult to distinguish the precise mass of the supermassive black holes at the center of these galaxies from the stars surrounding them. More observations are planned, taking spectra over a longer period of time, to get a better picture. 

“It’s very confusing,” Leja added. “You can make this uncomfortably fit in our current model of the universe, but only if we evoke some exotic, insanely rapid formation at the beginning of time. This is, without a doubt, the most peculiar and interesting set of objects I’ve seen in my career.”

The latest study is published in The Astrophysical Journal Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  2. Soccer-Liverpool’s Alexander-Arnold ruled out of Man City game
  3. What Are Baby Platypuses Called?
  4. Unlocking The Mystery Of 137: Why This Number Is So Important

Source Link: "Universe Breakers": Unexplainable Bright Red Dots Found In The Early Universe

Filed Under: News

Primary Sidebar

  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Newly Spotted Vaquita Babies Offer Glimmer Of Hope For World’s Rarest Marine Mammal
  • Do Bees Really “Explode” When They Mate? Yes, Yes They Do
  • How Do We Brush A Hippo’s Teeth?
  • Searching For Nessie: IFLScience Takes On Cryptozoology
  • Your Halloween Pumpkin Could Be Concealing Toxic Chemicals – And Now We Know Why
  • The Aztec Origins Of The Day Of The Dead (And The Celtic Roots Of Halloween)
  • Large, Bright, And Gold: Get Ready For The Biggest Supermoon Of The Year
  • For Just Two Days A Year, These Male Toads Turn A Jazzy Bright Yellow. Now We Know Why
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version