• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Venus’s Thin And “Squishy” Crust May Be Answer To Heat-Loss Mystery

March 1, 2023 by Deborah Bloomfield

Venus is only a bit smaller than Earth, but the similarities stop there. Earth’s “evil twin” is a hellish world of crushing pressure, lead-melting heat, and acid rain. Now, a long-standing mystery about how the interior of Venus loses heat may have been solved. Astronomers think a feature on its thin and squishy crust helps.

Earth has tectonic plates, which Venus does not. Heat travels from Earth’s hot core to the mantle and eventually the lithosphere, its outer shell, cooling as it goes. This convection is what drives tectonic processes on the surface. 

Advertisement

A new study looking at 65 unstudied coronae, geological features on Venus’s surface, suggests that the planet’s lithosphere is much thinner where they occur than elsewhere on the Venusian surface. At just 11 kilometers (7 miles) thick, the heat flow from there is much higher than the heat flow of the average location on Earth.

“For so long we’ve been locked into this idea that Venus’ lithosphere is stagnant and thick, but our view is now evolving,” lead author Suzanne Smrekar, senior research scientist at NASA’s Jet Propulsion Laboratory, said in a statement.

“While Venus doesn’t have Earth-style tectonics, these regions of thin lithosphere appear to be allowing significant amounts of heat to escape, similar to areas where new tectonic plates form on Earth’s seafloor.”

Over the last several years, evidence has been mounting that Venus is a lot more geologically active than previously considered. The coronae have certainly been an important focus on this but there are other indications too. And while the geological activity of Venus is unlike anything on Earth today, it might have been similar to Earth of the past, before the tectonic plates were established.

Advertisement

“What’s interesting is that Venus provides a window into the past to help us better understand how Earth may have looked over 2.5 billion years ago. It’s in a state that is predicted to occur before a planet forms tectonic plates,” said Smrekar.

The research used historical data collected by the Magellan mission which orbited Venus from 1989 to 1994. It mapped the planet using radar which could penetrate the dense clouds that shield the Venusian surface from view.  NASA’s forthcoming VERITAS mission, which Smrekar is the principal investigator of, will pick up from where Magellan left off. 

“VERITAS will be an orbiting geologist, able to pinpoint where these active areas are, and better resolve local variations in lithospheric thickness. We’ll even be able to catch the lithosphere in the act of deforming,” explained Smrekar. “We’ll determine if volcanism really is making the lithosphere ‘squishy’ enough to lose as much heat as Earth, or if Venus has more mysteries in store.”

The study was published in Nature Geoscience.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Rally marks 1,000 days since China detained two Canadians amid Huawei dispute
  2. Mexican president says to speak with Biden about climate change
  3. Taliban say Afghan boys’ schools to reopen, no mention of girls
  4. Gunfire disrupts Cameroon prime minister’s visit to separatist region

Source Link: Venus’s Thin And “Squishy” Crust May Be Answer To Heat-Loss Mystery

Filed Under: News

Primary Sidebar

  • There Are Just Two Places In The World With No Speed Limits For Cars
  • Three Astronauts Are Stranded In Space Again, After Their Ride Home Was Struck By Space Junk
  • Snail Fossils Over 1 Million Years Old Show Prehistoric Snails Gave Birth to Live Young
  • “Beautiful And Interesting”: Listen To One Of The World’s Largest Living Organisms As It Eerily Rumbles
  • First-Ever Detection Of Complex Organic Molecules In Ice Outside Of The Milky Way
  • Chinese Spacecraft Around Mars Sends Back Intriguing Gif Of Interstellar Comet 3I/ATLAS
  • Are Polar Bears Dangerous? How “Bear-Dar” Can Keep Polar Bears And People Safe (And Separate)
  • Incredible New Roman Empire Map Shows 300,000 Kilometers Of Roads, Equivalent To 7 Times Around The World
  • Watch As Two Meteors Slam Into The Moon Just A Couple Of Days Apart
  • Qubit That Lasts 3 Times As Long As The Record Is Major Step Toward Practical Quantum Computers
  • “They Give Birth Just Like Us”: New Species Of Rare Live-Bearing Toads Can Carry Over 100 Babies
  • The Place On Earth Where It Is “Impossible” To Sink, Or Why You Float More Easily In Salty Water
  • Like Catching A Super Rare Pokémon: Blonde Albino Echnida Spotted In The Wild
  • Voters Live Longer, But Does That Mean High Election Turnout Is A Tool For Public Health?
  • What Is The Longest Tunnel In The World? It Runs 137 Kilometers Under New York With Famously Tasty Water
  • The Long Quest To Find The Universe’s Original Stars Might Be Over
  • Why Doesn’t Flying Against The Earth’s Rotation Speed Up Flight Times?
  • Universe’s Expansion Might Be Slowing Down, Remarkable New Findings Suggest
  • Chinese Astronauts Just Had Humanity’s First-Ever Barbecue In Space
  • Wild One-Minute Video Clearly Demonstrates Why Mercury Is Banned On Airplanes
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version