• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Vortex Of Electrons Seen In Graphene At Room-Temperature For First Time

May 14, 2024 by Deborah Bloomfield

Graphene is a very weird material. It’s a single layer of carbon atoms organized in a honeycomb lattice. It has incredible strength and can conduct heat and electricity in a record-breaking way. The conductivity is based on the fact that electrons in the material behave like a viscous liquid. And like in any liquid, vortices can form.

Advertisement

However, believing that something should happen and seeing it is a whole different thing. Researchers had to use a high-resolution magnetic field sensor. This device allowed them to track the behavior of electrons. The vortices are usually best seen at extremely low temperatures but the device was good enough to spot them even at normal room temperature. Researchers had never seen these electron vortices in graphene before.

Advertisement

Observing the vortices meant observing the movement of the electrons in a detailed way. They tracked the tiny magnetic fields that the electrons flowing in graphene produce. 

The test subject was set up as follows: a strip of graphene 1 micron wide was attached to circular disks of either 1.2 microns or 3 microns. Theoretical calculations suggest that vortices will appear in the smaller disk but not in the wider.

“Thanks to our extremely sensitive sensor and high spatial resolution, we didn’t even need to cool down the graphene and were able to conduct the experiments at room temperature,” Dr Marius Palm, from ETH Zurich, said in a statement.

What the team saw was a reversal of the flow of the electrons (typical of how stuff in a vortex moves). As predicted, this effect was only visible in the smaller disk. In the larger one, the electrons flowed with no problem whatsoever.

Advertisement

The magnetic sensor is a diamond needle with a defect at its tip, known as a nitrogen-vacancy. By employing laser beams and microwave pulses, the needle can be extremely sensitive to external magnetic fields. However, they need to be very close to the graphene strip to pick up the magnetic fields of the electrons.

“Because of the tiny dimensions of the diamond needle and the small distance from the graphene layer – only around 70 nanometres – we were able to make the electron currents visible with a resolution of less than a hundred nanometres,” Palm explained.

One hundred nanometers might not seem like an incredible resolution for a strip of one micron (or 1,000 nanometers) across. But it is an important starting point for this work. There is much to find out about the behavior and cause of the vortices but being able to see them is first among the list.

“At this moment, the detection of electron vortices is basic research, and there are still lots of open questions,” added Palm.

Advertisement

A paper on the breakthrough is published in the journal Science.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: Vortex Of Electrons Seen In Graphene At Room-Temperature For First Time

Filed Under: News

Primary Sidebar

  • A New Way Of Looking At Einstein’s Equations Could Reveal What Happened Before The Big Bang
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations, NASA Reveals Comet 3I/ATLAS Images From 8 Missions, And Much More This Week
  • The Latest Internet Debate: Is It More Efficient To Walk Around On Massive Stilts?
  • The Trump Administration Wants To Change The Endangered Species Act – Here’s What To Know
  • That Iconic Lion Roar? Turns Out, They Have A Whole Other One That We Never Knew About
  • What Are Gravity Assists And Why Do Spacecraft Use Them So Much?
  • In 2026, Unique Mission Will Try To Save A NASA Telescope Set To Uncontrollably Crash To Earth
  • Blue Origin Just Revealed Its Latest New Glenn Rocket And It’s As Tall As SpaceX’s Starship
  • What Exactly Is The “Man In The Moon”?
  • 45,000 Years Ago, These Neanderthals Cannibalized Women And Children From A Rival Group
  • “Parasocial” Announced As Word Of The Year 2025 – Does It Describe You? And Is It Even Healthy?
  • Why Do Crocodiles Not Eat Capybaras?
  • Not An Artist Impression – JWST’s Latest Image Both Wows And Solves Mystery Of Aging Star System
  • “We Were Genuinely Astonished”: Moss Spores Survive 9 Months In Space Before Successfully Reproducing Back On Earth
  • The US’s Surprisingly Recent Plan To Nuke The Moon In Search Of “Negative Mass”
  • 14,400-Year-Old Paw Prints Are World’s Oldest Evidence Of Humans Living Alongside Domesticated Dogs
  • The Tribe That Has Lived Deep Within The Grand Canyon For Over 1,000 Years
  • Finger Monkeys: The Smallest Monkeys In The World Are Tiny, Chatty, And Adorable
  • Atmospheric River Brings North America’s Driest Place 25 Percent Of Its Yearly Rainfall In A Single Day
  • These Extinct Ice Age Giant Ground Sloths Were Fans Of “Cannonball Fruit”, Something We Still Eat Today
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version