• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Vortex Of Electrons Seen In Graphene At Room-Temperature For First Time

May 14, 2024 by Deborah Bloomfield

Graphene is a very weird material. It’s a single layer of carbon atoms organized in a honeycomb lattice. It has incredible strength and can conduct heat and electricity in a record-breaking way. The conductivity is based on the fact that electrons in the material behave like a viscous liquid. And like in any liquid, vortices can form.

Advertisement

However, believing that something should happen and seeing it is a whole different thing. Researchers had to use a high-resolution magnetic field sensor. This device allowed them to track the behavior of electrons. The vortices are usually best seen at extremely low temperatures but the device was good enough to spot them even at normal room temperature. Researchers had never seen these electron vortices in graphene before.

Advertisement

Observing the vortices meant observing the movement of the electrons in a detailed way. They tracked the tiny magnetic fields that the electrons flowing in graphene produce. 

The test subject was set up as follows: a strip of graphene 1 micron wide was attached to circular disks of either 1.2 microns or 3 microns. Theoretical calculations suggest that vortices will appear in the smaller disk but not in the wider.

“Thanks to our extremely sensitive sensor and high spatial resolution, we didn’t even need to cool down the graphene and were able to conduct the experiments at room temperature,” Dr Marius Palm, from ETH Zurich, said in a statement.

What the team saw was a reversal of the flow of the electrons (typical of how stuff in a vortex moves). As predicted, this effect was only visible in the smaller disk. In the larger one, the electrons flowed with no problem whatsoever.

Advertisement

The magnetic sensor is a diamond needle with a defect at its tip, known as a nitrogen-vacancy. By employing laser beams and microwave pulses, the needle can be extremely sensitive to external magnetic fields. However, they need to be very close to the graphene strip to pick up the magnetic fields of the electrons.

“Because of the tiny dimensions of the diamond needle and the small distance from the graphene layer – only around 70 nanometres – we were able to make the electron currents visible with a resolution of less than a hundred nanometres,” Palm explained.

One hundred nanometers might not seem like an incredible resolution for a strip of one micron (or 1,000 nanometers) across. But it is an important starting point for this work. There is much to find out about the behavior and cause of the vortices but being able to see them is first among the list.

“At this moment, the detection of electron vortices is basic research, and there are still lots of open questions,” added Palm.

Advertisement

A paper on the breakthrough is published in the journal Science.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: Vortex Of Electrons Seen In Graphene At Room-Temperature For First Time

Filed Under: News

Primary Sidebar

  • Why Do People Who Take The “Spirit Molecule” Describe Such Similar Experiences?
  • The Most Devastating Symptom Of Alzheimer’s Finally Has An Explanation – And, Maybe Soon, A Treatment
  • Kissing Has Survived The Path Of Evolution For 21 Million Years – Apes And Human Ancestors Were All At It
  • NASA To Share Its New Comet 3I/ATLAS Images In Livestream This Week – Here’s How To Watch
  • Did People Have Bigger Foreheads In The Past? The Grisly Truth Behind Those Old Paintings
  • After Three Years Of Searching, NASA Realized It Recorded Over The Apollo 11 Moon Landing Footage
  • Professor Of Astronomy Explains Why You Can’t Fire Your Enemies Straight Into The Sun
  • Do We All See The Same Blue? Brilliant Quiz Shows The Subjective Nature Of Color Perception
  • Earliest Detailed Observations Of A Star Exploding Show True Shape Of A Supernova
  • Balloon-Mounted Telescope Captures Most Precise Observations Of First Known Black Hole Yet
  • “Dawn Of A New Era”: A US Nuclear Company Becomes First Ever Startup To Achieve Cold Criticality
  • Meet The Kodkod Of The Americas: Shy, Secretive, And Super-Small
  • Incredible Footage May Be First Evidence Wild Wolves Have Figured Out How To Use Tools
  • Raccoons In US Cities Are Evolving To Become More Pet-Like
  • How Does CERN’s Antimatter Factory Work? We Visited To Find Out
  • Elusive Gingko-Toothed Beaked Whale Seen Alive For First Time Ever
  • Candidate Gravitational Wave Detection Hints At First-Of-Its-Kind Incredibly Small Object
  • People Are Just Learning What A Baby Eel Is Called
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations
  • Traces Of Photosynthetic Lifeforms 1 Billion Years Older Than Previous Record-Holder Discovered
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version