• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Watch A Hybrid Robot With Living Biological Muscles Wander Through Water

January 30, 2024 by Deborah Bloomfield

Forget nuts and bolts. Japanese scientists have created a two-legged “biohybrid robot” that combines living biological muscle with an artificial skeleton. 

To create the robot, researchers at the University of Tokyo grew skeletal muscle in molds to create strips. They then fashioned the lightweight skeleton out of styrene board, a flexible silicone-based body, acrylic resin legs with brass wire weights, and 3D-printed feet. 

Advertisement

The strips of muscle tissue were then fixed along the body to the feet of the robot, not dissimilar to how they’re attached to an animal’s bone.

With a jolt of electricity, the robot can slowly move forward and turn within a small circle. 

“Initially, we weren’t at all sure that achieving bipedal walking was possible, so it was truly surprising when we succeeded. Our biohybrid robot managed to perform forward and turning movements with a bipedal walk by effectively balancing four key forces: the muscle contractile force, the restorative force of the flexible body, the gravity acting on the weight, and the buoyancy of the float,” Professor Shoji Takeuchi, study author from the Graduate School of Information Science and Technology at the University of Tokyo, said in a statement.



Advertisement

Don’t expect a graceful gait from the robot just yet. The current model is only capable of nudging around by pivoting on its two “limbs,” which it achieves at an achingly slow speed of just 5.4 millimeters per minute. It’s only capable of working underwater, as the lab-grown muscle dries out quickly when exposed to air.

Nevertheless, the new research project shows roboticists are overcoming a major hurdle with biohybrid robots, which currently can move in straight lines or perform large turns.

These early steps in creating “biohybrid robots” are part of scientists’ interest in using examples from living organisms to create smarter and smoother robots.

“By incorporating living tissues as part of a robot, we can make use of the superior functions of living organisms,” explained Takeuchi.

Labeled illustration and image of the “biohybrid robot”.

Labeled illustration and image of the “biohybrid robot”.

Image credit: ©2024, Kinjo et al/ Matter

“We’re working on designing robots with joints and additional muscle tissues to enable more sophisticated walking capabilities. Our findings offer valuable insights for the advancement of soft flexible robots powered by muscle tissue and have the potential to contribute to a deeper understanding of biological locomotion mechanisms, further enabling us to mimic the intricacies of human walking in robots,” Takeuchi added.

Beyond pure robotics, many other scientists are looking into ways to meld living structures with technological systems. Just a few weeks ago, researchers at Indiana University Bloomington unveiled a computer chip that was fused with human brain tissue, creating a mini hybrid cyborg in a Petri dish that can perform math equations and recognize speech.

The study is published in the journal Matter. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soldiers say Guinea constitution, gov’t dissolved in apparent coup
  2. Rivian announces membership plan with complimentary charging and LTE connectivity
  3. Czech central bank shocks with 75 basis-point interest rate increase
  4. Megaslumps Explained: Their Impact And Threat To Earth’s Future

Source Link: Watch A Hybrid Robot With Living Biological Muscles Wander Through Water

Filed Under: News

Primary Sidebar

  • Ancient Roman Military Officers Had Pet Monkeys, And The Pet Monkeys Had Pet Piglets
  • Lasting 29 Hours, The World’s Longest Commercial Scheduled Flight Is Set To Take Off This Week
  • What Is Christougenniatikophobia, And What Do I Do About It?
  • Sun’s Ancient Encounter With Two Hot Stars Left A Legacy In The Solar System’s Neighborhood
  • Defiant Stars And Unusual Objects Survive Against The Milky Way’s Supermassive Black Hole
  • A Wobbling Brown Dwarf Might Be A Sign Of The First Discovered “Exomoon” – A Moon Outside The Solar System
  • “Happy Molecule” Precursor Discovered In Extraterrestrial Material For The First Time
  • Why Do Seals Slap Their Belly?
  • Interstellar Comet 3I/ATLAS Appears To Be Experiencing “Cryovolcanism”, And Is Eerily Similar To Objects In The Outer Solar System
  • Catch The Last Supermoon Of The Year This Week
  • Why Does It Feel Like You’re Dropping Around 30 Seconds After A Plane Takes Off?
  • We Finally Understand Why We “Feel” It When We See Someone Get Hurt
  • The First Map Of America: Juan De La Cosa’s Strange Map Was Missing Until 1832
  • What’s The Difference Between Buffalo And Bison?
  • 18,000-Year-Old Stalagmite Sheds Light On Why Civilization Started In The Fertile Crescent
  • Enormous Anaconda Fossils Reveal They Got Big 12 Million Years Ago – And Stayed Big
  • Meet The Malaysian Earthtiger Tarantula: Secretive And Stripy With A Leg Span For Days
  • Meet The Thresher Shark, A Goofy Predator That Whips Up Cavitation Bubbles To Stun Prey
  • 18 Asteroids Passed Earth Closer Than The Moon In November – All Of Them Were Discovered That Month
  • 7th Person Cured Of HIV After Stem Cell Donation Offers Hope Of Expanded Treatment Options
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version