• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

We Finally Know Why Some Alloys Don’t Expand When Heated

July 31, 2023 by Deborah Bloomfield

When you heat things, they expand. It’s why hot air rises and bridges sometimes buckle on very hot days. There’s an exception – crucial for much of life on Earth – for water at temperatures close to freezing, but otherwise, the pattern is close to universal. In 1895, Charles-Edouard Guillaume discovered a mixture of iron and nickel represents another exception, which has only now been explained. The answer could have some applications in precise instrument manufacturing and infrastructure building.

Ice, unusually for a solid, is less dense than the liquid from which it freezes, and water colder than 4°C (39°F) needs to expand to approach this point as it cools. That’s not the case for the alloy Guillaume discovered, known as Invar, nor some others collectively known as invars. For one thing, unlike cold water, invars don’t shrink as they are warmed up, they just stay the same size. They also do it over a much wider temperature range than water’s 0-4 °C anomaly.

Advertisement

What is even stranger is that iron and nickel both expand like other self-respecting elements when heated, as do most combinations of the two metals. It’s only in specific ratios, such as 13 iron atoms for every 7 nickel atoms, that no change occurs as heat is applied. The same effect has been demonstrated in a handful of other alloys, such as the right ratios of iron with lead or platinum.

Stefan Lohaus is a Caltech graduate student who has been working on the anomaly. To explain it, Lohaus and his supervisor Professor Brent Fultz had to go back to the cause of most materials’ expansion. Heat is related to entropy, the amount of disorder in a system. If a material’s temperature rises, its atoms engage in increased random motion which, in the ordinary course of events, forces them further apart

Invars, as far as we know, all have one of the small number of ferromagnetic elements as their primary ingredient, suggesting magnetism is part of the explanation. Guillaume won the 1920 Nobel Prize for Physics for noticing this, as well as his original discovery, but he was never able to fully explain how magnetism produces the effect. 

“We decided to look at that because we have this very neat experimental setup that can measure both magnetism and atomic vibrations,” Lohaus said in a statement. The setup involved squeezing Invar up to 200,000 times atmospheric pressure using diamond anvils and passing X-rays through to track how much the atoms vibrated.

Advertisement

Magnetism (in case Insane Clown Posse wants an answer) results from electron spin states. The team found that magnetic effects order the behavior of Invar’s atoms in a way that balances out the entropy from extra heat. When cold, the electrons in the Invars’ outer shells have common spin states, pushing them – and therefore their atoms – apart. 

At higher temperatures the order breaks down, with some electrons flipping to the opposite spin state, allowing atoms to get closer together. The extent to which this happens precisely balances the rate at which the atoms’ vibrations push them apart. The relationship holds because atomic vibrations are not continuous, but instead operate in quantized modes known as phonons. 

“There are literally thousands of publications trying to show how magnetism causes contraction, but there was no holistic explanation of the Invar effect,” Lohaus said.

The relationship breaks down at pressures above 3 Gigapascals, but since that is almost 30,000 times atmospheric pressure or almost a hundred times what crushed OceanGate’s Titan, it’s not usually an issue in everyday life.

Advertisement

Invar behavior can be quite useful. Hot temperatures cause serious problems when metals expand more than was expected, something that is happening increasingly frequently.  Climate disasters are when it’s most important for infrastructure to keep working, and alloys that are not heat-sensitive can play a part in that. 

Although we don’t need to understand why they work to use them, it certainly gives a greater sense of confidence in what once seemed suspiciously like magic. Moreover, Lohaus, Fultz, and co-authors expect their work will improve our understanding of thermal expansion in other materials capable of magnetization.

The study is published open access in the journal Nature Physics 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Scrappy Sakkari survives gruelling three-setter to beat Andreescu
  2. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  3. French court postpones verdict over Tapie affair – judicial source
  4. First Case Of Human Infection By Silverleaf Fungus That Usually Infects Trees

Source Link: We Finally Know Why Some Alloys Don’t Expand When Heated

Filed Under: News

Primary Sidebar

  • US Just Killed NASA’s Mars Sample Return Mission – So What Happens Now?
  • Art Sleuths May Have Recovered Traces Of Da Vinci’s DNA From One Of His Drawings
  • Countries With The Most Narcissists Identified By 45,000-Person Study, And The Results Might Surprise You
  • World’s Oldest Poison Arrows Were Used By Hunters 60,000 Years Ago
  • The Real Reason You Shouldn’t Eat (Most) Raw Cookie Dough
  • Antarctic Scientists Have Just Moved The South Pole – Literally
  • “What We Have Is A Very Good Candidate”: Has The Ancestor Of Homo Sapiens Finally Been Found In Africa?
  • Europe’s Missing Ceratopsian Dinosaurs Have Been Found And They’re Quite Diverse
  • Why Don’t Snorers Wake Themselves Up?
  • Endangered “Northern Native Cat” Captured On Camera For The First Time In 80 Years At Australian Sanctuary
  • Watch 25 Years Of A Supernova Expanding Into Space Squeezed Into This 40-Second NASA Video
  • “Diet Stacking” Trend Could Be Seriously Bad For Your Health
  • Meet The Psychedelic Earth Tiger, A Funky Addition To “10 Species To Watch” In 2026
  • The Weird Mystery Of The “Einstein Desert” In The Hunt For Rogue Planets
  • NASA Astronaut Charles Duke Left A Touching Photograph And Message On The Moon In 1972
  • How Multilingual Are You? This New Language Calculator Lets You Find Out In A Minute
  • Europa’s Seabed Might Be Too Quiet For Life: “The Energy Just Doesn’t Seem To Be There”
  • Amoebae: The Microscopic Health Threat Lurking In Our Water Supplies. Are We Taking Them Seriously?
  • The Last Dogs In Antarctica Were Kicked Out In April 1994 By An International Treaty
  • Interstellar Comet 3I/ATLAS Snapped By NASA’s Europa Mission: “We’re Still Scratching Our Heads About Some Of The Things We’re Seeing”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version