• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

We Have Ignition: US Experiment Becomes First To Achieve Controlled Fusion

December 14, 2022 by Deborah Bloomfield

For the first time, a controlled fusion experiment has produced more energy than was put in. This is known as ignition, and it was achieved at the Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) in California. An experiment conducted on December 5 has reached that incredible threshold and milestone achievement in the quest to control the physics that powers the Sun and all the stars.

The NIF approach to fusion requires lasers and a type of hydrogen that has neutrons in its nucleus. This heavy hydrogen is kept in a tiny cylinder, and this container is shot with the largest laser in the world. The power it delivers is enormous; the cylinder is vaporized in an instant, turned into plasma, and shot inwards, where it encounters the hydrogen with such force that the fuel is compressed and fuses. This process releases energy. 

Advertisement

The energy delivered by the laser alone on December 5 was 2.05 megajoules, and it produced 3.15 megajoules of fusion energy output. This energy output is modest in the grand scheme of things (less than a kilowatt hour), but they got 53 percent more energy out than they put in.

“The pursuit of fusion ignition in the laboratory is one of the most significant scientific challenges ever tackled by humanity, and achieving it is a triumph of science, engineering, and most of all, people,” Lawrence Livermore National Laboratory Director Dr Kim Budil said in a statement. “Crossing this threshold is the vision that has driven 60 years of dedicated pursuit — a continual process of learning, building, expanding knowledge and capability, and then finding ways to overcome the new challenges that emerged. These are the problems that the U.S. national laboratories were created to solve.”

The NIF approaches nuclear fusion in a different way from the reactors being built in Europe and Asia, which are either tokamaks or stellarators. But no matter what design they follow, nuclear fusion plants are unlike traditional nuclear power plants, which work by nuclear fission. Fusion doesn’t produce heaps of nuclear waste to be buried and can’t experience a nuclear meltdown. Also, unlike fossil fuel plants, fusion doesn’t depend on the burning of fuels and so it doesn’t release greenhouse gases.

Advertisement

“The experiment demonstrates unambiguously that the physics of Laser Fusion works. In order to transform NIF’s result into power production a lot of work remains, but this is a key step along the path. Next steps include the demonstration of even higher fusion energy-gain and the further development of more efficient methods to drive the implosion,” Dr Robbie Scott, of the Science and Technology Facilities Council’s Central Laser Facility Plasma Physics Group, said in a statement.

Dr Scott was responsible for the discovery that non-spherical implosions are less efficient. This led to the development of better diagnostic tools that made sure the implosions are as spherical as possible.

The road to a commercial power plant remains long. A future of unlimited carbon-free energy is clearly possible, but to get there, investment in renewables today and continued support of fusion research are key.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Spain sets out plan to tackle rising hate crimes
  2. UK consumer morale wilts under cost-of-living crisis: GfK
  3. Ethiopians in three regions vote in delayed election
  4. Genetically Modified Purple Tomatoes Will Be Popping Up On US Plates By Next Spring

Source Link: We Have Ignition: US Experiment Becomes First To Achieve Controlled Fusion

Filed Under: News

Primary Sidebar

  • Interstellar Comet 3I/ATLAS Is Back From Behind The Sun – Still Not An Alien Spacecraft, Though
  • Bowhead Whales Can Live For 200 Years – This May Explain Their Extraordinary Longevity
  • Trump Orders First Nuclear Weapons Test In The US Since 1992 – Here’s What You Need To Know
  • Tiny Triceratops-Tackling Tyrannosaur Was Its Own Species, Not A Baby T. Rex
  • What Makes Ammolite Gemstones, A Rare Kind Of Fossilized Ammonite, So Vibrant? It’s All In The Nacre
  • Something Melted This Tesla’s Windscreen. Could It Have Been A World-First Meteorite Collision?
  • Carnivorous “Death-Ball” Sponge Among 30 New Deep-Sea Weirdos Discovered In The Southern Ocean
  • Chimps Can Revise Beliefs When Confronted With Conflicting Evidence. Can You?
  • Explosive Airbursts, Like Tunguska, Might Be Hiding Among “Halloween Fireballs” Meteor Shower
  • One Of The World’s Rarest Penguins Is Actually Three Subspecies In A Trench Coat
  • “I Am The Allergen”: The Super-Rare Condition That Makes Everyone Else Allergic To You
  • 42,000-Year-Old Yellow Crayon Suggests Neanderthals Created Art – And It’s Still Sharp Too
  • IFLScience Investigates The Loch Ness Monster: A Round-Up Of Our Spooky Season Nessie Deep Dive
  • Why An Eastern Pacific Tear In Earth’s Crust Could Spare The Pacific Northwest… Eventually
  • JWST Reveals Never-Before-Seen Details Of The Red Spider Nebula And It’s Spectacular
  • “Breaking Records By Extraordinary Margins”: 22 Of Earth’s 34 Vital Signs At Record Levels
  • “The Most Important Unsolved Problem In Pure Math”: Where Is Humanity At With Prime Numbers?
  • The “Great Halloween Solar Storms”: 22 Years Ago, One Of The Most Powerful CMEs Ever Hit Earth
  • IFLScience Investigates The Loch Ness Monster: A Documentary On The Science, The Story, And The Power Of Belief
  • Remarkably Preserved 23-Million-Year-Old “Frosty” Rhino Discovered In Canadian Arctic
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version